Processing math: 100%

CBSE Questions for Class 11 Commerce Applied Mathematics Number Theory Quiz 12 - MCQExams.com

The modulus of the complex number z such that |z+3i|=1 and argz=π is equal to
  • 1
  • 2
  • 4
  • 3
The roots of the equation (3b+c4a)x2+(3c+a4b)x+(3a+b4c)=0 are 
  • Irrational
  • Rational
  • Non-real
  • Imaginary
z22z2z2z1z2 is unimodular then
  • |z2|=2
  • |z1|=1
  • Both A and B
  • None of these
If z is a complex number of unit modules and argument θ, then the real part of z(1ˉz)z(1+z) is :
  • 2sin2θ2
  • 2sin2θ2
  • 1+cosθ2
  • 1cosθ2
This equation (x5)11+(x52)11+....+(x511)11=0 has 
  • all the roots real
  • one real and 10 imaginary roots
  • real roots namely x=5,52....,59,510,511
  • none
If z= 1(2+3i)2,then|z|=
  • 113
  • 15
  • 112
  • none of these
The complex number z satisfies the equation z + |z| = 2 + 8i. Then the value of |z| is
  • 15
  • 16
  • 17
  • 18
The complex number z satisfies z+|z|=2+8i. The value of |z| is 
  • 10
  • 13
  • 17
  • 23
The modulus of the complex number z such that |z+3i|=1 and arg z=π is equal to 
  • 1
  • 2
  • 9
  • 4
  • 3
For two unimodular complex numbers z1 and z2,
[¯z1z2¯z1z1]1[z1z2¯z2¯z1]1 is equal to 
  • [z1z2¯z1¯z2]
  • [1001]
  • [120012]
  • None of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers