Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js

CBSE Questions for Class 11 Commerce Applied Mathematics Number Theory Quiz 3 - MCQExams.com

Which one of the following is not a prime number?
  • 31
  • 61
  • 71
  • 91
What is the modulus of 2+i2i where i=1
  • 3
  • 12
  • 1
  • None of the above
If cos(logi4i)=a+ib, then
  • a=1,b=1
  • a=1,b=1
  • a=1,b=0
  • a=1,b=2
Which of the following numbers is prime?
  • 119
  • 187
  • 247
  • 179
(7×11×13+13) is a/an
  • Composite number
  • Prime number
  • Irrational number
  • Imaginary number.
The reciprocal of the smallest prime number is _______.
  • 0
  • 12
  • 1
  • 2
Which of the following is not a prime number?
  • 23
  • 29
  • 43
  • 21
Instructions and memory address are represented by 
  • Character code
  • Binary codes
  • Binary word
  • parity bit
Bit stands for
  • Binary digits
  • bit of system
  • a part of byte
  • All of above
A byte is made up of
  • Eight bytes
  • Eight binary digits
  • Two binary digits
  • Tow decimal points
The roots of the equation (z+αβ)3=α3 represent the vertices of a triangle, one of whose sides is of length
  • 3|αβ|
  • 3|α|
  • 3|β|
  • None of these
How many options doe a BINARY choice offer
  • None
  • One
  • Two
  • it depends on the amount of memory on the computer
  • It depends on the speed of the computer's processor
Which number system is usually followed in a typical 32-bit computer?
  • Binary
  • Decimal
  • Hexadecimal
  • Octal
Put the following in the form of A + iB :
(32i)(2+3i)(1+2i)(2i)
  • 34+94i
  • 63251625i
  • 54+94i
  • 14+74i
............... code is used to implement data transparency in the binary synchronous protocol.
  • DLE
  • NAK
  • EOH
  • EOT
The number 111111111 is a
  • Prime number
  • Composite number
  • Divisible by 10719
  • None of these
In the complex numbers, where i=1, the conjugate of any value a+bi is aib. What is the result when you multiply 2+7i by its conjugate?
  • 45
  • 45
  • 45i
  • 53
  • 53i
Evaluate:
|(1+i)(2+i)(3+i)|= ?
  • 12
  • 12
  • 1
  • 1
If (1+i)20=a+ib, then the values of a and b are
  • a=210,b=210
  • a=210,b=0
  • a=210,b=0
  • none of these
The maximum value of |3z+97i|if|z+2i|=5is
  • 20
  • 15
  • 25
  • 5
Find the modulus of the complex number 2+23i.
  • 2
  • 4
  • 6
  • 8
Find the which of the complex number has greatest modulus.
  • 75i
  • 3+2i
  • 8+15i
  • 3(1i)
If z1z+1 is purely imaginary then 
  • |z|=1
  • |z|>1
  • |z|<1
  • |z|<2
 For any complex number z the minimum value of |z|+|z2013i| is...
  • 2010
  • 2011
  • 2013
  • 2012
If z=x+iy(x,y\epsilon R,x\neq -1/2), the number of values of z satisfying \left | z \right |^{n}=z^{2}\left | z \right |^{n-2}+1.(n\epsilon N,n> 1)is
  • 0
  • 1
  • 2
  • 3
Which of the following is true
  • (3 + \sqrt{-5})(3 - \sqrt{-5}) = 14
  • (-2 + \sqrt{-3})(-3 + 2\sqrt{-3}) = -7\sqrt{3}i
  • (2 + 3i)^2 = (-5 + 12i)
  • (\sqrt{5} - 7i)^2 = -44 - 14\sqrt{5}i
z_{1} and z_{2} are two non-zero complex numbers such that |z_{1}|=|z_{2}| and argz_{1}+argz_{2}=\pi, then z_{2} equals 
  • \bar{z_{1}}
  • -\bar{z_{1}}
  • z_{1}
  • -z_{1}
If z=1+i\sqrt { 3, } \left| arg\left( z \right)  \right| +\left| arg\left( \overline { z }  \right)  \right|
  • \dfrac{\pi}{3}
  • \dfrac{2\pi}{3}
  • 0
  • \dfrac{\pi}{2}
If \alpha and \beta  are real then \left| \dfrac { \alpha +i\beta  }{ \beta +i\alpha  }  \right|= 
  • Lies betwen 0 and 1
  • = 1
  • >1
  • 2
If arg \left( {{Z_1} + {Z_2}} \right) = 0\; and |{z_1}|\; = \;|{z_2}|\; = 1. then.
  • {z_1} + {z_2} = 0
  • {z_1}{\overline z _2} = 1
  • {z_1} = {\overline z _2}
  • none
The value of {\left( {1 + i} \right)^5} \times {\left( {1 - i} \right)^5} is
  • -8
  • 8i
  • 8
  • 32
How many two-digit prime numbers are there having the digit 3 in their units place?
  • 10
  • 8
  • 6
  • 5
Argument and modulus of \left[\dfrac {1+i}{1-i}\right]^{2013} are respectively ____
  • \dfrac {-\pi}{2} and 1
  • \dfrac {\pi}{2} and \sqrt {2}
  • 0 and \sqrt {2}
  • \dfrac {\pi}{2} and 1
 If z_1=\sqrt { 3 } -i,z_2=1+i\sqrt { 3 } , then amp(z_1+z_2)= 
  • \dfrac { \pi }{ 12 }
  • \dfrac { \pi }{ 15 }
  • \dfrac { \pi }{ 6 }
  • \dfrac { \pi }{ 4 }
If z=\dfrac {1+2i}{1-2i}  and.consider z=x+iy then which of the following relationship is correct:
  • x^{2}+y^{2}=1
  • x^{2}+y^{2}=4
  • x^{2}+y^{2}=2
  • x^{2}+y^{2}=3
Find the least positive value of n, if (\dfrac{1+i}{1-i})^n=1
  • 1
  • 2
  • 3
  • 4
Inequality  a + i b > c + i d  can be explained only when :
  • b=0,c=0
  • b=0,d=0
  • a=0,c=0
  • a=0,d=0
If z_1=3+4i\\z_2=4-5i Then find z_1+z_2
  • 7-i
  • 7+i
  • 7+9i
  • None of these
If z_1=3+4i,z_2=2-i find z_2-z_1
  • -1-5i
  • 2-5i
  • 1+5i
  • 1-5i
The complex numbers z_1=8+9i, z_2=4-6i then z_1-z_2
  • 4+15i
  • 4-3i
  • 12+3i
  • 12-15i
If z is a complex number such that |z|=1, then \left|\dfrac 1{\bar z}\right| is 
  • 0
  • -1
  • \sqrt{2}
  • 1
The sum of prime numbers, out of the numbers 17, 8, 21, 13, 41, 2, 27, 31, 51 is:
  • 125
  • 102
  • 104
  • 155
If z_1=4+i,z_2=4-i find z_1z_2
  • 17
  • 16
  • 17-i
  • 16i
z_1=9+8i\ \ \  |z|=
  • \sqrt {145}
  • \sqrt {163}
  • \sqrt {117}
  • \sqrt {137}
Mark against the correct answer in each of the following .
i^{-38}=?
  • i
  • -i
  • 1
  • -1
Mark against the correct answer in each of the following .
i^{-75}=?
  • 1
  • -1
  • i
  • -i
Mark against the correct answer in each of the following .
i^{124}=?
  • -1
  • 1
  • i
  • -i
If (x+iy)(2-3i)=4+i\left ( \dfrac{1}{2} \right ) then x + y =
  • \dfrac{3}{2}
  • \dfrac{1}{2}
  • 0
  • \dfrac{2}{3}
In the complex numbers, where i^{2} = -1, what is the value of 5 + 6i multiplied by 3-  2i?
  • 27
  • 27i
  • 27 + 8i
  • 15 + 8i
  • 15 - 18i
If m_1m_2m_3 and m_4 respectively denote the moduli of the complex numbers 1 + 4i, 3 + i, 1 – i \ and\  2 – 3i then the correct order among the following is :
  • m_1<m_2<m_3<m_4
  • m_4<m_3<m_2<m_1
  • m_3<m_2<m_4<m_1
  • m_3<m_1<m_2<m_4
0:0:3


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers