Explanation
z_{1} and z_{2} are roots of z^{2}-az+a^{2}=0\therefore z_{1},z_{2}=\dfrac{a\pm \sqrt{a^{2}-4a^{2}}}{2}=a(\dfrac{1\pm i\sqrt{3}}{2})\therefore z_{1} , z_{2} are multiple of complex cube roots of unity.\therefore |\dfrac{z_{1}}{z_{2}}|=|\dfrac{\omega ^{2}}{\omega }|=|\omega |=1
\Rightarrow \left | (x-a)+iy \right |=\left | (x+a)+iy \right |
\Rightarrow (x-a)^{2}+\not{ y^{2}} =(x+a)^{2}+\not{ y^{2}}
\Rightarrow \not{ x^{2}} +\not{ a^{2}} -2ax =\not{ x^{2}} +\not{ a^{2}} +2ax
\Rightarrow 0
\left | \dfrac{1}{(1-i)^{2}}-\dfrac{1}{(1+i)^{2}} \right |=\left | \dfrac{(1+i)^{2}-(1-i)^{2}}{\left ( (1-i)(1+i) \right )^{2}} \right |
=\left | \dfrac{\not{1}+2i-\not{1}-(\not{1}-2i)-\not{1} }{(1^{2}+1^{2})^{2}}\right |
=\left | \dfrac{4i}{4} \right |=1
a_{n}=(\sqrt{3+i})(\sqrt{3}-i)^{n-1}
\downarrow \downarrow
first ratio
[as |z^{n-1}|=(|z|)^{n-1}]
Please disable the adBlock and continue. Thank you.