Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

CBSE Questions for Class 11 Commerce Applied Mathematics Number Theory Quiz 4 - MCQExams.com

|(3+i)(2i)1+i|=
  • 5
  • 52
  • 10
  • 5
If z1 and z2 are two complex numbers, then Re(z1z2) is:
  • Re(z1)Re(z2)
  • Re(z1).Re(z2)Im(z1).Im(z2)
  • Im(z1).Re(z2)
  • Re(z1).Im(z2)
The real part of (1+i3i)2=
  • 1
  • 16
  • 16ω2
  • 325
If z=1+3i then z2+2z+10=
  • 0
  • 1
  • –1
  • 2
The value of 1+(1+i)+(1+i)^2+(1+i)^3=
  • 0
  • 5i
  • 4i
  • 3i
If \left ( 5+3i \right )(x+iy)=3-4i then 34x =
  • 1
  • 2
  • 3
  • 4
The simplified value of \displaystyle \frac{1-i}{1+i} is:
  • i
  • -i
  • 1
  • -2i

The minimum value of |\mathrm{z}|+|\mathrm{z}-1|+|\mathrm{z}-2| is
  • 0
  • 1
  • 2
  • 4

lf z_{1},\ z_{2} are roots of equation z^{2}-az+a^{2}=0, then |\displaystyle \frac{z_{1}}{z_{2}}|=
  • a^{2}
  • a
  • 2a
  • 1

 lf \log_{\frac{1}{2}}|\mathrm{z}-2|>\log_{\frac{1}{2}}|z| then
  • x>1
  • x<1
  • x<2
  • x>2
The modulus of (1 + i) (3 + 4i) =
  • \sqrt{50}
  • \sqrt{25}
  • 10
  • 10 \sqrt{2}

The region represented by z such that \left | \dfrac{\mathrm{z}-a}{z+a} \right |=1({\rm Im} (a) = 0) is
  • y=0
  • x=0
  • x+y=0
  • x-y=0

\left | \displaystyle \frac{1}{(1-i)^{2}}-\frac{1}{(1+i)^{2}}\right |=
  • 4
  • 3
  • 2
  • 1

lf z_{1},\ z_{2} are any two complex numbers then \left |z_{1^{+}}\sqrt{\mathrm{z}_{1}^{2}-\mathrm{z}_{2}^{2}} \right |+\left|\mathrm{z}_{1}-\sqrt{\mathrm{z}_{1}^{2}-\mathrm{z}_{2}^{2}} \right| is equal to
  • |\mathrm{z}_{1}|
  • |\mathrm{z}_{2}|
  • |z_{1}+\mathrm{z}_{2}|+|\mathrm{z}_{1}-\mathrm{z}_{2}|
  • |\mathrm{z}_{1}+\mathrm{z}_{2}|-|\mathrm{z}_{1}-\mathrm{z}_{2}|
If z_1z_2z_3 are complex numbers such that \left| { z }_{ 1 } \right| =\left| { z }_{ 2 } \right| =\left| { z }_{ 3 } \right| =\left| \dfrac { 1 }{ { z }_{ 1 } } +\dfrac { 1 }{ { z }_{ 2 } } +\dfrac { 1 }{ { z }_{ 3 } }  \right| =1, then |z_1+z_2+z_3| is:
  • Equal to 1
  • Less than 1
  • Greater than 3
  • Equal to 3
I. \left| \frac { { z }_{ 1 }+{ z }_{ 2 } }{ { z }_{ 1 }-{ z }_{ 2 } }  \right| =1 if \frac{z_1}{z_2} is purely imaginary
II. If z is purely real then z=\overline{z}
  • Only II is true
  • Only I is true
  • Both I and II are true
  • I is false but II is true
lf (x+iy)(2+cos\theta+isin\theta)=3 then x^{2}+y^{2}-4x+3 is
  • 0
  • 1
  • 3
  • 4
If z=2-i\sqrt{3} then z^{4}-4z^{2}+8z+35 is :
  • 6
  • 0
  • 1
  • 2

lf Z_{1},Z_{2} are two unimodular Complex numbers then \left |\displaystyle \frac{1}{Z_{1}}+\frac{1}{Z_{2}} \right|=
  • 1
  • |Z_{1}+Z_{2}|
  • |Z_{1}|+|Z_{2}|
  • 2
The real value of \theta for which the expression, \displaystyle \frac{1+i\cos\theta}{1-2i\cos\theta} is real number is
  • n\displaystyle \pi\pm\frac{\pi}{2}
  • n\displaystyle \pi-\frac{\pi}{2}
  • n\displaystyle \pi+\frac{\pi}{2}
  • 2n\displaystyle \pi\pm \cfrac {\pi}{2}

If \alpha,\ \beta,\ \gamma are modulus of the complex number 3+4i, -5+12i,\ 1-i, then the increasing order for \alpha, \beta and \gamma is
  • \alpha,\ \gamma,\ \beta
  • \alpha,\ \beta,\ \gamma
  • \gamma,\ \alpha,\ \beta
  • can't be determined

\mathrm{l}\mathrm{n} a G. \mathrm{P} first term is \sqrt{3}+i and common ratio is \sqrt{3}-i then the modulus of the n^{th} term of the G.\mathrm{P}. is
  • 4
  • 2^{n-1}
  • 2^{n}
  • 2^{n+1}

lf \displaystyle \log_{(\frac{1}{3})}|z+1|>\log_{(\frac{1}{3})}|z-1|, then
  • {\rm Re}(z)\geq 0
  • {\rm Re}(z)<0
  • {\rm Im}(z)>0
  • {\rm Im}(z)\leq 0
If z_{1},z_{2} are complex numbers and a.b are real numbers then |az_{1}-bz_{2}|^{2}+|bz_{1}+az_{2}|^{2}=
  • (a^{2}+b^{2})|z_{1}^{2}+z_{2}^{2}|
  • (a^{2}+b^{2})(|z_{1}|^{2}+|z_{2}|^{2})
  • \displaystyle \frac{1}{a^{2}+b^{2}}(|z_{1}|^{2}+|z_{2}|^{2})
  • (a^{2}+b^{2})|z_{1}|+|z_{2}|
If \dfrac{x+3i}{2+iy}=1-i, then the value of \left ( 5x-7y \right )^2 is
  • 1
  • 0
  • 2
  • 4
Number of solutions of the equation |z|^{2}+7{z}=0 is
  • 1
  • 2
  • 4
  • 6
The given figure represents a multiplication operation, where each alphabet represents a different number, then what is the value of A.


99751_363f64b2356043bab765ef568d463828.png
  • 0
  • 3
  • 2
  • 4
Solve the equation \left|z\right| = z + 1 + 2i.
  • 3 - 2i
  • 2 - \displaystyle \frac{3}{2}i
  • 2 +\displaystyle \frac{3}{2}i
  • \displaystyle \frac{3}{2} - 2i
If z = x + iy and w = \displaystyle \frac{1 - zi}{z - i}, |w| = 1, then find the locus of z.
  • z lies on the imaginary axis.
  • z lies only on positive real axis.
  • z lies only on negative real axis.
  • z lies on the real axis.
If z = x + iy and x^2 + y^2 = 16, then the range of \left|\left|x\right| - \left|y\right|\right| is 
  • [0, 4]
  • [0,2]
  • [2, 4]
  • none of these
If \left|z\right |^2 - 3 = 3\left|z\right|, then the value of \left|z\right| is
  • 1
  • \displaystyle \frac{3 + \sqrt{21}}{2}
  • \displaystyle \frac{\sqrt{21}- 3}{2}
  • none of these
Find the complex numbers z which simultaneously satisfy the equation \displaystyle \left | \frac{z - 12}{z - 8 i} \right | = \frac{5}{3} and \displaystyle \left | \frac{z - 4}{z - 8} \right | = 1.
  • 6 + 8 i or 6 + 17 i
  • 6 + 8 i or 6 - 17 i
  • 6 - 8 i or 6 + 17 i
  • 6 - 8 i or 6 - 17 i
  • Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
  • Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
  • Assertion is correct but Reason is incorrect
  • Assertion is incorrect and Reason is correct
Locate the complex number z = x + iy for which log_{1/3} \{ log_{1/2} (|z|^2 + 4 |z| + 3) \} < 0
  • Empty set
  • circle of radius 6 and center at origin
  • circle of radius 3 and center at origin
  • circle of radius 2 and center at origin
If i{ z }^{ 3 }+{ z }^{ 2 }-z+i=0, then 
  • \left| z \right| <1
  • \left| z \right| >1
  • \left| z \right| =1
  • \left| z \right| =0
Number of roots of the equation z^{10} - z^5 - 992 = 0 where real parts are negative is
  • 3
  • 4
  • 5
  • 6
Find the greatest and the least value of \left|z_1 + z_2\right| if z_1 = 24 + 7i and \left|z_2\right| = 6.
  • least value is 25, greatest value is 31
  • least value is 19, greatest value is 31
  • least value is 19, greatest value is 25
  • least value is 13, greatest value is 25
If\displaystyle\ z_{1}\neq-z_{2} and \displaystyle\ |z_{1}+z_{2}|=\left | \frac{1}{z_{1}}+\frac{1}{z_{2}} \right | then
  • at least one of \displaystyle\ z_{1}, z_{2} is unimodular
  • both\displaystyle\ z_{1}, z_{2} are unimodular
  • \displaystyle\ z_{1}. z_{2} = 1
  • None of these
\left( \frac{1+cos\dfrac{\pi}{8}-i  sin \dfrac{\pi}{8}}{1+cos \dfrac{\pi}{8}+i  sin \dfrac{\pi}{8}}\right)^8 =
  • 1
  • -1
  • 2
  • \frac{1}{2}
If (w - \overline{w}z)/(1-z) is purely real where w = \alpha + i\beta, \beta \neq 0 and z \neq 1, then set of the values of  z is 
  • {z : \left|z\right| = 1}
  • {z : z = \overline{z}}
  • {z : z \neq 1}
  • {z : \left|z\right| = 1, z \neq 1}
If (\sqrt{8} + i)^{50} = 3^{49}(a + ib), then find the value of a^2 + b^2
  • (a^2 + b^2) = 9
  • (a^2 + b^2) = 27
  • (a^2 + b^2) = 3
  • (a^2 + b^2) = 1
Find the minimum value of |z-1| if \left|\left|z - 3\right| - \left|z + 1\right|\right| = 2.
  • \left|z - 1\right| \ge 0
  • \left|z - 1\right| \ge 1
  • \left|z - 1\right| \ge 2
  • \left|z - 1\right| \ge 3
If z is a complex number, then find the minimum value of \left|z\right| + \left|z - 1\right| + \left|2z - 3\right|.
  • E = 1
  • E = 2
  • E = 3
  • E = 4
Let z be a complex number such that the imaginary part of z is nonzero and a = z^2 + z + 1 is real. Then a cannot take the value
  • -1
  • \dfrac{1}{3}
  • \dfrac{1}{2}
  • \dfrac{3}{4}
If \left|z_1 - 1\right| \le 1, \left|z_2 - 2\right| \le 2, \left|z_3 - 3\right| \le 3, then find the greatest value of \left|z_1 +  z_2 + z_3\right|.
  • the greatest value is 6.
  • the greatest value is 7.
  • the greatest value is 9.
  • the greatest value is 12.
For all complex numbers z_1, z_2 satisfying \left|z_1\right| = 12 and \left|z_2 - 3 - 4i\right| = 5, then minimum value of \left|z_1 - z_2\right| is  
  • 0
  • 2
  • 7
  • 17
The value of the sum \displaystyle\ \sum _{n=1}^{13}\left ( i^{n}+i^{n+1} \right ) , where \displaystyle\ i=\sqrt{-1}
  • i
  • i-1
  • -i
  • 0
If z_{1} and z_{2} are two nonzero complex number such that \displaystyle |z_1|+|z_{2}|=|z_{1}+z_{2}| then arg\: z_{1}-arg\: z_{2} is equal to 
  • -\pi
  • \displaystyle \frac{\pi}{2}
  • \displaystyle -\frac{\pi}{2}
  • 0
If \displaystyle \displaystyle\ |z_{1}-1|<1, |z_{2}-2|<2, |z_{3}-3|<3 then \displaystyle\ |z_{1}+z_{2}+z_{3}|
  • \displaystyle\ is less than 6
  • \displaystyle\ is more than 3
  • \displaystyle\ is less than 12
  • \displaystyle\ lies between 6 and 12
If \displaystyle\ z_{1}, z_{2} are two nonzero complex numbers such that \displaystyle\ |z_{1}+z_{2}|=|z_{1}|+\left| z_{ 2 } \right| then amp \displaystyle\ \frac{z_{1}}{z_{2}} is equal to
  • \displaystyle\ \pi
  • \displaystyle\ -\pi
  • 0
  • \displaystyle\ \frac{\pi}{2}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers