Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js

CBSE Questions for Class 11 Commerce Applied Mathematics Number Theory Quiz 4 - MCQExams.com

|(3+i)(2i)1+i|=
  • 5
  • 52
  • 10
  • 5
If z1 and z2 are two complex numbers, then Re(z1z2) is:
  • Re(z1)Re(z2)
  • Re(z1).Re(z2)Im(z1).Im(z2)
  • Im(z1).Re(z2)
  • Re(z1).Im(z2)
The real part of (1+i3i)2=
  • 1
  • 16
  • 16ω2
  • 325
If z=1+3i then z2+2z+10=
  • 0
  • 1
  • 1
  • 2
The value of 1+(1+i)+(1+i)2+(1+i)3=
  • 0
  • 5i
  • 4i
  • 3i
If (5+3i)(x+iy)=34i then 34x=
  • 1
  • 2
  • 3
  • 4
The simplified value of 1i1+i is:
  • i
  • i
  • 1
  • 2i

The minimum value of |z|+|z1|+|z2| is
  • 0
  • 1
  • 2
  • 4

lf z1, z2 are roots of equation z2az+a2=0, then |z1z2|=
  • a2
  • a
  • 2a
  • 1

 lf log12|z2|>log12|z| then
  • x>1
  • x<1
  • x<2
  • x>2
The modulus of (1+i)(3+4i)=
  • 50
  • 25
  • 10
  • 102

The region represented by z such that |zaz+a|=1(Im(a)=0) is
  • y=0
  • x=0
  • x+y=0
  • xy=0

|1(1i)21(1+i)2|=
  • 4
  • 3
  • 2
  • 1

lf z1, z2 are any two complex numbers then |z1+z21z22|+|z1z21z22| is equal to
  • |z1|
  • |z2|
  • |z1+z2|+|z1z2|
  • |z1+z2||z1z2|
If z1z2z3 are complex numbers such that |z1|=|z2|=|z3|=|1z1+1z2+1z3|=1, then |z1+z2+z3| is:
  • Equal to 1
  • Less than 1
  • Greater than 3
  • Equal to 3
I. |z1+z2z1z2|=1 if z1z2 is purely imaginary
II. If z is purely real then z=¯z
  • Only II is true
  • Only I is true
  • Both I and II are true
  • I is false but II is true
lf (x+iy)(2+cosθ+isinθ)=3 then x2+y24x+3 is
  • 0
  • 1
  • 3
  • 4
If z=2i3 then z44z2+8z+35 is :
  • 6
  • 0
  • 1
  • 2

lf Z1,Z2 are two unimodular Complex numbers then |1Z1+1Z2|=
  • 1
  • |Z1+Z2|
  • |Z1|+|Z2|
  • 2
The real value of θ for which the expression, 1+icosθ12icosθ is real number is
  • nπ±π2
  • nππ2
  • nπ+π2
  • 2nπ±π2

If α, β, γ are modulus of the complex number 3+4i,5+12i, 1i, then the increasing order for α,β and γ is
  • α, γ, β
  • α, β, γ
  • γ, α, β
  • can't be determined

ln a G. P first term is 3+i and common ratio is 3i then the modulus of the nth term of the G.P. is
  • 4
  • 2n1
  • 2n
  • 2n+1

lf log(13)|z+1|>log(13)|z1|, then
  • Re(z)0
  • Re(z)<0
  • Im(z)>0
  • Im(z)0
If z1,z2 are complex numbers and a.b are real numbers then |az1bz2|2+|bz1+az2|2=
  • (a2+b2)|z21+z22|
  • (a2+b2)(|z1|2+|z2|2)
  • 1a2+b2(|z1|2+|z2|2)
  • (a2+b2)|z1|+|z2|
If x+3i2+iy=1i, then the value of (5x7y)2 is
  • 1
  • 0
  • 2
  • 4
Number of solutions of the equation |z|2+7z=0 is
  • 1
  • 2
  • 4
  • 6
The given figure represents a multiplication operation, where each alphabet represents a different number, then what is the value of A.


99751_363f64b2356043bab765ef568d463828.png
  • 0
  • 3
  • 2
  • 4
Solve the equation |z|=z+1+2i.
  • 32i
  • 232i
  • 2+32i
  • 322i
If z=x+iy and w=1zizi,|w|=1, then find the locus of z.
  • z lies on the imaginary axis.
  • z lies only on positive real axis.
  • z lies only on negative real axis.
  • z lies on the real axis.
If z=x+iy and x2+y2=16, then the range of ||x||y|| is 
  • [0, 4]
  • [0,2]
  • [2, 4]
  • none of these
If |z|23=3|z|, then the value of |z| is
  • 1
  • 3+212
  • 2132
  • none of these
Find the complex numbers z which simultaneously satisfy the equation |z12z8i|=53 and |z4z8|=1.
  • 6 + 8 i or 6 + 17 i
  • 6 + 8 i or 6 - 17 i
  • 6 - 8 i or 6 + 17 i
  • 6 - 8 i or 6 - 17 i
  • Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
  • Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
  • Assertion is correct but Reason is incorrect
  • Assertion is incorrect and Reason is correct
Locate the complex number z=x+iy for which log1/3{log1/2(|z|2+4|z|+3)}<0
  • Empty set
  • circle of radius 6 and center at origin
  • circle of radius 3 and center at origin
  • circle of radius 2 and center at origin
If iz3+z2z+i=0, then 
  • |z|<1
  • |z|>1
  • |z|=1
  • |z|=0
Number of roots of the equation z10z5992=0 where real parts are negative is
  • 3
  • 4
  • 5
  • 6
Find the greatest and the least value of |z1+z2| if z1=24+7i and |z2|=6.
  • least value is 25, greatest value is 31
  • least value is 19, greatest value is 31
  • least value is 19, greatest value is 25
  • least value is 13, greatest value is 25
If z1z2 and  |z1+z2|=|1z1+1z2| then
  • at least one of  z1,z2 is unimodular
  • both z1,z2 are unimodular
  •  z1.z2=1
  • None of these
(1+cosπ8isinπ81+cosπ8+isinπ8)8=
  • 1
  • 1
  • 2
  • 12
If (w¯wz)/(1z) is purely real where w=α+iβ,β0 and z1, then set of the values of  z is 
  • z:|z|=1
  • z:z=¯z
  • z:z1
  • z:|z|=1,z1
If (8+i)50=349(a+ib), then find the value of a2+b2
  • (a2+b2)=9
  • (a2+b2)=27
  • (a2+b2)=3
  • (a2+b2)=1
Find the minimum value of |z1| if ||z3||z+1||=2.
  • |z1|0
  • |z1|1
  • |z1|2
  • |z1|3
If z is a complex number, then find the minimum value of \left|z\right| + \left|z - 1\right| + \left|2z - 3\right|.
  • E = 1
  • E = 2
  • E = 3
  • E = 4
Let z be a complex number such that the imaginary part of z is nonzero and a = z^2 + z + 1 is real. Then a cannot take the value
  • -1
  • \dfrac{1}{3}
  • \dfrac{1}{2}
  • \dfrac{3}{4}
If \left|z_1 - 1\right| \le 1, \left|z_2 - 2\right| \le 2, \left|z_3 - 3\right| \le 3, then find the greatest value of \left|z_1 +  z_2 + z_3\right|.
  • the greatest value is 6.
  • the greatest value is 7.
  • the greatest value is 9.
  • the greatest value is 12.
For all complex numbers z_1, z_2 satisfying \left|z_1\right| = 12 and \left|z_2 - 3 - 4i\right| = 5, then minimum value of \left|z_1 - z_2\right| is  
  • 0
  • 2
  • 7
  • 17
The value of the sum \displaystyle\ \sum _{n=1}^{13}\left ( i^{n}+i^{n+1} \right ) , where \displaystyle\ i=\sqrt{-1}
  • i
  • i-1
  • -i
  • 0
If z_{1} and z_{2} are two nonzero complex number such that \displaystyle |z_1|+|z_{2}|=|z_{1}+z_{2}| then arg\: z_{1}-arg\: z_{2} is equal to 
  • -\pi
  • \displaystyle \frac{\pi}{2}
  • \displaystyle -\frac{\pi}{2}
  • 0
If \displaystyle \displaystyle\ |z_{1}-1|<1, |z_{2}-2|<2, |z_{3}-3|<3 then \displaystyle\ |z_{1}+z_{2}+z_{3}|
  • \displaystyle\ is less than 6
  • \displaystyle\ is more than 3
  • \displaystyle\ is less than 12
  • \displaystyle\ lies between 6 and 12
If \displaystyle\ z_{1}, z_{2} are two nonzero complex numbers such that \displaystyle\ |z_{1}+z_{2}|=|z_{1}|+\left| z_{ 2 } \right| then amp \displaystyle\ \frac{z_{1}}{z_{2}} is equal to
  • \displaystyle\ \pi
  • \displaystyle\ -\pi
  • 0
  • \displaystyle\ \frac{\pi}{2}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers