Explanation
z1 and z2 are roots of z2−az+a2=0∴z1,z2=a±√a2−4a22=a(1±i√32)∴z1,z2 are multiple of complex cube roots of unity.∴|z1z2|=|ω2ω|=|ω|=1
⇒|(x−a)+iy|=|(x+a)+iy|
⇒(x−a)2+⧸y2=(x+a)2+⧸y2
⇒⧸x2+⧸a2−2ax=⧸x2+⧸a2+2ax
⇒0
|1(1−i)2−1(1+i)2|=|(1+i)2−(1−i)2((1−i)(1+i))2|
=|⧸1+2i−⧸1−(⧸1−2i)−⧸1(12+12)2|
=|4i4|=1
an=(√3+i)(√3−i)n−1
↓ ↓
first ratio
[as|zn−1|=(|z|)n−1]
Please disable the adBlock and continue. Thank you.