Processing math: 1%

CBSE Questions for Class 11 Commerce Applied Mathematics Number Theory Quiz 5 - MCQExams.com

If  α,β be two complex numbers then  |α|2+|β|2 is equal to
  •  12(|α+β|2|αβ|2)
  •  12(|α+β|2+|αβ|2)
  •  |α+β|2+|αβ|2
  • None of these
For { { Z }_{ 1 }=\sqrt [ 6 ]{ \dfrac { 1-i }{ 1+i\sqrt { 3 }  }  }  };\quad { { Z }_{ 2 }=\sqrt [ 6 ]{ \dfrac { 1-i }{ \sqrt { 3 } +i }  } ;\quad { { Z }_{ 3 }=\sqrt [ 6 ]{ \dfrac { 1-i }{ \sqrt { 3 } -i }  }  } } which of the following holds good?
  • \sum { { \left| { Z }_{ 1 } \right| }^{ 2 } } =\dfrac { 3 }{ 2 }
  • { \left| { Z }_{ 1 } \right| }^{ 4 }+{ \left| { Z }_{ 2 } \right| }^{ 4 }={ \left| { Z }_{ 3 } \right| }^{ -8 }
  • \sum { { \left| { Z }_{ 1 } \right| }^{ 3 }+ } { \left| { Z }_{ 2 } \right| }^{ 3 }={ \left| { Z }_{ 3 } \right| }^{ -6 }
  • { \left| { Z }_{ 1 } \right| }^{ 4 }+{ \left| { Z }_{ 2 } \right| }^{ 4 }={ \left| { Z }_{ 3 } \right| }^{ 8 }
if \displaystyle\ z=1+i\ \tan \alpha , where \displaystyle\ \pi < \alpha < \frac{3\pi }{2} is |z| is equal to 
  • \displaystyle\ \sec \alpha
  • \displaystyle\ -\sec \alpha
  • \displaystyle\ cosec\alpha
  • none of these
If \displaystyle u_{i}=1-\frac{1}{i} then \displaystyle u_{2}\cdot u_{3}\cdot ... \cdot u_{n} is equal to 
  • \displaystyle \frac{1}{n}
  • \displaystyle \frac{1}{n!}
  • 1
  • none of these
If \displaystyle\ z=x-iy\displaystyle\ such that \displaystyle\ |z+1|=|z-1|  and amp \displaystyle\ \frac{z-1}{z+1}= \frac{\pi}{4} then   
  • \displaystyle\ x=\sqrt{2}+1, y=0
  • \displaystyle\ x=0, y=\sqrt{2}+1
  • \displaystyle\ x=0, y=\sqrt{2}-1
  • \displaystyle\ x=\sqrt{2}-1, y=0
The complex number which satisfies the equation z+\sqrt { 2 } \left| z+1 \right| +i=0 is
  • 2-i
  • -2-i
  • 2+i
  • -2+i
If z be a complex number, then the minimum value of \left | z-7 \right |+\left | z \right | is
  • \displaystyle \frac{\sqrt{3}-1}{2}
  • -\sqrt{7}
  • \displaystyle \frac{7+\sqrt{2}}{2}
  • 7
If \displaystyle z= 1+i\sqrt{3},then \displaystyle z^{6} equals
  • 32
  • -32
  • 64
  • None of these
Write all the composite numbers between 10 and 35.
  • 7, 12, 14, 15, 16, 17, 20, 21, 22, 24, 25, 26, 27, 28, 30,33 and 34
  • 7, 12, 14, 15, 16, 18, 20, 21, 21, 24, 25, 26, 27, 28, 32, 33 and 34
  • 7, 12, 14, 15, 16, 19, 20, 21, 22, 24, 25, 26, 27, 28, 32, 33 and 34
  • None of these
The locus of \displaystyle z= x+iy which satisfying the inequality \displaystyle \log_{1/2}\left | z-1 \right |> \log_{1/2}\left | z-i \right | is given by
  • \displaystyle x+y< 0
  • \displaystyle x-y> 0
  • \displaystyle x-y< 0
  • \displaystyle x+y> 0
The complex number z satisfying the equations \left| z \right| -4=\left| z-i \right| -\left| z+5i \right| =0, is
  • \sqrt { 3 } -i
  • 2\sqrt { 3 } -2i
  • -2\sqrt { 3 } -2i
  • 0
Solve : (2-\sqrt{-100})(1+\sqrt{-36})
  • 62+2i
  • 52+2i
  • -52+2i
  • -88+2i
If \displaystyle z=1+i\cot\alpha,-\frac{\pi}{2}<\alpha<0, then |z| is equal to 
  • cosec\alpha
  • -cosec\alpha
  • cosec\alpha or -cosec\alpha
  • none of these
If z=4+i\sqrt7, then value of z^3-4z^2-9z+91 equals
  • 0
  • 1
  • -1
  • 2
\displaystyle \left [ \left ( \cos \theta +i \sin \theta \right )\left ( \cos \theta -i\sin \theta  \right ) \right ]^{-1}
  • \displaystyle i
  • \displaystyle 1
  • \displaystyle -i
  • \displaystyle -1
If \left| z \right| \ge 5 then the least value \left| {z + \frac{2}{z}} \right| is 
  • \frac{{23}}{5}
  • \frac{{24}}{5}
  • 5
  • none of these
For a complex number z, the minimum value of \left | z \right |+\left | z-\cos\alpha-i\sin\alpha \right | is
  • 0
  • 1
  • 2
  • None of these
Find the modulus and amplitude of -2 + 2 \sqrt 3i
  • |z|=2\sqrt [ 2 ]{ 2 } ; amp(z)=\dfrac {\pi}{3}
  • |z|=2\sqrt [ 2 ]{ 2 } ; amp(z)=\dfrac {2\pi}{3}
  • |z|=4; amp(z)=\dfrac {2\pi}{3}
  • |z|=4; amp(z)=\dfrac {\pi}{3}
The inequality |z-4| < |z-2| represents the region given by 
  • Re(z) > 1
  • Re(z) < 2
  • Re(z) > 0
  • None of these
Solve:
\displaystyle \left ( x+iy \right )\left ( 2-3i \right )= 4+i
  • \displaystyle x= \left ( 8/13 \right ), y= -\left ( 14/13 \right ).
  • \displaystyle x= \left ( 5/13 \right ), y= \left ( 14/13 \right ).
  • \displaystyle x= -\left ( 14/13 \right ), y= \left ( 5/13 \right ).
  • \displaystyle x= \left ( 14/13 \right ), y=- \left ( 8/13 \right ).
Find the value of x^3 + 7x^2 -x + 16, where x = 1 + 2i
  • -17 + 24i
  • 24 + 17i
  • 17 - 24i
  • 24 - 17i
Consider the following statements:
A. The sum of two prime numbers is a prime number. 
B. The product of two prime numbers is a prime number. 
Which of these statements is/are correct ?
  • Neither A nor B
  • A alone
  • B alone
  • Both A and B
Which one of the following is the largest prime number of three digits?
  • 997
  • 999
  • 991
  • 993
If z = re^{i\theta}, then the value of |e^{iz}| is equal to
  • e^{rcos\theta}
  • e^{-rcos\theta}
  • e^{rsin\theta}
  • e^{-rsin\theta}
Find the modulus and amplitude of -2i
  • |z|=2; amp(z)=-\dfrac {3\pi}{2}
  • |z|=2i; amp(z)=\dfrac {\pi}{2}
  • |z|=2; amp(z)=\dfrac {\pi}{2}
  • |z|=2; amp(z)=-\dfrac {\pi}{2}
A student was asked to find the sum of all the prime numbers between 10 and 40.He found the sum as 180.Which of the following statements is true?
  • He missed one prime number between 10 and 20
  • He missed one prime number between 20 and 30
  • He added one extra prime number between 10 and 20
  • None of these
Which of the following statement is true?
  • 1 is the smallest prime number
  • Every prime number is an odd number
  • The sum of two prime numbers is always a prime number
  • None of these
The number 10 has four factors: 1,2, 5 and 10. The table below lists the number of factors for some numbers
NumbersNumber of factors
214
232
253
274
292
From this, we can say that the number of prime numbers between 20 and 30 is:
  • 0
  • 2
  • 3
  • 4
Find the modulus and amplitude of -\sqrt 3-i
  • |z|=2; amp(z)=-\dfrac {5\pi}{6}
  • |z|=4; amp(z)=\dfrac {5\pi}{6}
  • |z|=4; amp(z)=-\dfrac {\pi}{6}
  • none of these
(i) Every prime number is odd.
(ii) The product of any two prime numbers is odd.
Which of the above statements(s) is/are correct? 
  • Statement I alone.
  • Statement II alone.
  • Both statements I and II.
  • Neither statement I nor statement II.
If z_1, z_2, \varepsilon C are such that |z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 then \displaystyle \frac{z_1}{z_2} is
  • zero
  • purely real
  • purely imaginary
  • complex
Let \displaystyle \left| Z_{r}-r\right| \leq r,\forall r=1,2,3,.......n. Then \displaystyle \left| \sum_{r=1}^{n} Z_{r} \right| is less than
  • n
  • 2n
  • n(n+1)
  • \displaystyle \frac{n(n+1)}{2}
(1 + i)^8 + (1 -i)^8 =
  • 16
  • -16
  • 32
  • -32
If z = x + iy and |z 1 + 2i | = | z + 1 2i |,then the locus of z is
  • circle
  • parabola
  • straight line
  • None of these
Modulus of \displaystyle \frac{cos \theta- isin\theta }{sin\theta - icos\theta} is
  • 0
  • 2\theta
  • \pi - 2\theta
  • none of these
If z_1 and z_2 are any two complex numbers, then \displaystyle \frac{z_2 + z_1}{||z_2| - |z_1||} is
  • \leq 1 
  • \geq 1
  • \geq -1
  • none of these
Find the value of: i^2 + i^4 + i^6 +..... upto (2n +1) terms.
  • i
  • -i
  • 1
  • -1
i^n + i^{n + 1} + i^{n + 2}+ i^{n + 3} (n   \in   N) is equal to
  • 4
  • 1
  • 0
  • 2
Solve:
 \displaystyle \left|(1 + i)\frac{(2+i)}{(3 + i)}\right|
  • \dfrac{1}{2}
  • \dfrac{-1}{2}
  • 1
  • -1
If x and y are real then which one of the following is true
  • |x - y| = |x| - |y|
  • |x + y| \leq |x| - |y|
  • |x - y| \geq |x| - |y|
  • |x + y| = |x| + |y|
The modulus of (1 + i) (1 + 2i) (1 + 3i) is equal to
  • \sqrt10
  • \sqrt 5
  • 5
  • 10
If |z -2 + i| = |z-3-i|, then the locus of z is
  • 2x -4y -5 = 0
  • 2x + 4y -5 = 0
  • x -2y + 5 = 0
  • none of these
The value of (x - 1) \displaystyle \left ( x + \frac{1}{2} - \frac{\sqrt{3}}{2} i \right )\left ( x + \frac{1}{2} + \frac{\sqrt 3}{2} i \right ) is
  • x^3 + x^2 + x 1
  • x^3 -1
  • x^3 + 1
  • x^3 - x^2 + x + 1
Number of complex numbers z satisfying \left| 2z \right| =\left| 2z-1 \right| =\left| 2z+1 \right| is equal to-
  • 0
  • 1
  • 2
  • 3
The locus represented by |z -1|=|z + i| is
  • a circle of radius 1 unit
  • an ellipse with foci at (1, 0) and (0, 1)
  • a straight line through the origin
  • a circle on the line joining (1, 0) and (0, 1) as diameter
Fill in the blanks.
Every composite number can be expressed as a product of ____, and this factorization is unique except for the order in which the prime factors occur.
  • Co-primes
  • Twin primes
  • Primes
  • All of these
If \displaystyle z= (i)^{(i)^{(i)}} where i = \sqrt{-1}, then z is equal to
  • -i
  • -1
  • 1
  • i
If {z}_{1},{z}_{2} are two complex numbers and c>0 such that { \left| { z }_{ 1 }+{ z }_{ 2 } \right|  }^{ 2 }\le \left( 1+c \right) { \left| { z }_{ 1 } \right|  }^{ 2 }+k{ \left| { z }_{ 2 } \right|  }^{ 2 }, then k=
  • 1-c
  • c-1
  • 1+{c}^{-1}
  • 1-{c}^{-1}
Which of the following number is composite?
  • 1
  • 4
  • 2
  • 3
Find the product and write the answer in standard form.
\left( 2-4i \right) \left( 3+7i \right)
  • 34+2i
  • -5-3i
  • 5+3i
  • 5-3i
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers