Processing math: 100%

CBSE Questions for Class 11 Commerce Applied Mathematics Number Theory Quiz 6 - MCQExams.com

Let Xn={z=x+iy:|z|21n} for all integers n1. Then, n=1Xn is
  • A singleton set
  • Not a finite set
  • An empty set
  • A finite set with more than one element
If z1,z2 and z3 are complex numbers such that |z1|=|z2|=|z3|=|1z1+1z2+1z3|=1, then |z1+z2+z3| is
  • equal to 1
  • less than 1
  • greater than 3
  • equal to 3
The modulus of 1i3+i+4i5 is
  • 5 unit
  • 115 unit
  • 55 unit
  • 125 unit
Find the product. Write the answer in standard form.
i(62i)(75i)
  • 52+16i
  • 10i3+44i2+42i
  • 4432i
  • 44+32i
The number of composite number between 101 and 120 are 
  • 11
  • 12
  • 13
  • None
The product of (32i) and (524i), if i=1 , is:
  • 1217i
  • 14+92i
  • 28i14i2
  • i(8+92)
The resultant complex number when (4+6i) is divided by (105i) is
  • 225+1625i
  • 2251625i
  • 25+65i
  • 2565i
If A=(34i) and B=(9+ki), where k is a constant. 
If AB15=60, then the value of k is
  • 6
  • 24
  • 12
  • 3
The simplest form of 18×50 is
  • 30
  • 30i
  • 30
  • 30i
Express  (5i)(7+8i)(24i)  in the form of a complex number a+bi.
  • 109105310i
  • 109105310i
  • 10910+5310i
  • 10910+5310i
Simplify (2+8i)(14i)(32i)(6+4i)
 (Note:i=1)
  • 8
  • 26
  • 34
  • 50
|3+i(1+i)(1+3i)|=
  • 1
  • 2
  • 12
  • 12
What is the approximate magnitude of 8+4i?
  • 4.15
  • 8.94
  • 12.00
  • 18.64
  • 32.00
The imaginary number i is defined such that i2=1. What is the value of (1i5)(1+i5)?
  • 5
  • 5
  • 6
  • 6
How many of the prime factors of 30 are greater than 2
  • One
  • Two
  • Three
  • Four
  • Five
If i=1, find the values of n such that in+(i)n have a positive value.
  • 23
  • 24
  • 25
  • 26
  • 27
The value of (a+2i)(bi) is
  • a+bi
  • ab+2
  • ab+(2ba)i+2
  • ab2
  • ab+(2ba)i2
Find (5+2i)(52i)
  • 254i
  • 2520i
  • 21
  • 29
  • 0
Find the number of prime numbers between 301 and 320?
  • 6
  • 5
  • 4
  • 3
If (2i)×(abi)=2+9i, where i is the imaginary unit and a and b are real numbers, then a equals
  • 3
  • 2
  • 1
  • 0
  • 1
Every composite number has _____________.
  • no prime divisor
  • one and only one prime divisor
  • atleast one prime divisor
  • atleast two prime divisor
The modulus of the complex quantity (23i)(1+7i).
  • 513
  • 526
  • 135
  • 265
The real part of (1cosθ+isinθ)1 is
  • 12
  • 11+cosθ
  • tanθ2
  • cotθ2
If z=(3+i)3(3i+4)2(8+6i)2, then |z| is equal to
  • 0
  • 1
  • 2
  • 3
Given : u=1+i3 and v=3+i

Calculate u3v4

  • (1/4)i1/4
  • (3/4)i3/4
  • (1/4)i3/4
  • none of these
The expression 34i5+3i is equivalent to
  • 2729i34
  • 2729i16
  • 329i34
  • 18
  • 158i
The fraction 11+i is equivalent to
  • 1i
  • 1+i2
  • 1i2
  • i
  • i
p+iq=(23i)(4+2i) then q is
  • 14
  • 14
  • 8
  • 8
Perform the indicated operations:
(5+3i)(32i)
  • 212i
  • 193i
  • 112i
  • 21i
If x2+y2=1 then value of 1+x+iy1+xiy is
  • xiy
  • 2x
  • 2iy
  • x+iy
If f(z)=1z31z, where z=x+iy with z1, then Re¯{f(z)}=0 reduces to
  • x2+y2+x+1=0
  • x2y2+x1=0
  • x2y2x+1=0
  • x2y2+x+1=0
  • x2y2+x+2=0
If x+iy=32+cosθ+isinθ, then x2+y2 is equal to
  • 3x4
  • 4x3
  • 4x+3
  • None of these
The modulus of (3+2i)2(43i) is:
  • 135
  • 115
  • 95
  • 75
Let z=x+iy, where x and y are real. The points (x,y) in the XY plane for which z+izi is purely imaginary lie on
  • A straight line
  • An ellipse
  • A hyperbola
  • A circle
The complex number z satisfying the equation |zi|=|z+1|=1 is
  • 0
  • 1+i
  • 1+i
  • 1i
The expression (1+i)n(1i)n2 equals.
  • in+1
  • in+1
  • 2in+1
  • 1
If (1+i1i)m=1, then the least positive integral value of m is
  • 1
  • 4
  • 2
  • 3
Let Z and w be complex numbers. If Re(z)=|z2|,Re(w)=|wz| and arg(zw)=π3, then the value of Im(z+w), is
  • 13
  • 23
  • 3
  • 43
If z1 and z2 are complex numbers with |z1|=|z2|, then which of the following is/are correct?
1. z1=z2
2. Real part of z1= Real part of z2
3. Imaginary part of z1= Imaginary part of z2
Select the correct answer using the statements given below :
  • 1 only
  • 2 only
  • 3 only
  • None
If iz3+z2z+i=0, then |z| is equal to
  • 0
  • 1
  • 2
  • None of these
If 'ω' is a complex cube root of unity,then ω(13+29+427...)+ω(12+38+932...)=
  • 1
  • 1
  • ω
  • i
The principal argument of the complex number z=1+sinπ3+icosπ31+sinπ3icosπ3 is?
  • π3
  • π6
  • 2π3
  • π2
  • π4
The value of nk=0(ik+ik+1), where i2=1, is equal to :
  • iin
  • i+in+1
  • iin+1
  • iin+2
  • iin
If z1 and z2 be complex numbers such that z1+i(¯z2)=0 and arg(¯z1z2)=π3. Then, arg(¯z1) is equal to
  • π3
  • π
  • π2
  • 5π12
  • 5π6
The inequality |z4|<|z2| represents the region given by:
  • Re(z)0
  • Re(z)<0
  • Re(z)>0
  • None of these
Letz = cosθ+isinθ. Then the value of 1m=15Im(z2m1) at θ=20 is 
  • 1sin20
  • 13sin20
  • 12sin20
  • 14sin20
If the complex numbers z1,z2 and z3 denote the vertices of an isosceles triangle, right angled at z1, then (z1z2)2+(z1z3)2 is equal to
  • 0
  • (z2+z3)2
  • 2
  • 3
  • (z2z3)2
If z=12+i32, then 8+10z+7z2 is equal to :
  • 12i32
  • 12+i32
  • 12+i332
  • 32i
  • 32i
If z is a complex number such that z+|z|=8+12i, then the value of |z2| is
  • 228
  • 144
  • 121
  • 169
  • 189
Let P(eiθ1)Q(eiθ2)  and  R(eiθ3) be the vertices of a triangle PQR in the Argand Plane. The orthocenter of the triangle PQR is 
  • 2e(θ1+θ2+θ3)
  • 23e(θ1+θ2+θ3)
  • eθ1+eθ2+eθ3
  • None of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers