Processing math: 26%

CBSE Questions for Class 11 Commerce Applied Mathematics Number Theory Quiz 7 - MCQExams.com

The number which have only two factors (1 and the number itself) are called as ________.
  • Composite
  • Even
  • Prime
  • None of these
Computers use the .... number system to store data and perform calculations.
  • binary
  • octal
  • decimal
  • hexadecimal
If z1,z2 are two complex numbers such that arg(z1+z2)=0 and Im(z1z2)=0, then.
  • z1=z2
  • z1=z2
  • z1=z2
  • none of these
If z+2|z+1|+i=0 and z=x+iy, then
  • x=2
  • x=2
  • y=2
  • y=1
If z1=3+5i;z2=53i and z is a complex number lying on the line segment joining z1 and z2, then arg(z) can be:
  • 3π4
  • π4
  • π6
  • 5π6
The complex numbers z=x+iy which satisfy the equation
|z5iz+5i|=1 lie on:
  • the x-axis
  • straight line y=5
  • a circle through the origin
  • none of these
Which of the following is not a binary number?
  • 001
  • 101
  • 202
  • 110
The memory of a computer is commonly expressed in terms of Kilobytes or Megabytes. A byte is made up of
  • eight decimal digits
  • eight binary digits
  • two binary digits
  • two decimal digits
What is the byre capacity of a drum which is 5 inch high, 10 inch diameter, and which has 60 tracks per inch and bit density of 800 bits per inch?
  • 942000 bytes
  • 9712478 bytes
  • 192300 bytes
  • 14384 bytes
  • None of the above
What digits are representative of all binary numbers?
  • 0
  • 1
  • Both (a) and (b)
  • 3
  • None of the above
If |z4z|=2 , then the maximum value of|z| is
  • 5
  • 5+1
  • 51
  • 15
If z1,z2,z3 are three points lying on the circle |z| =2, then the minimum value of |z1+z2|2+|z2+z3|2+|z3+z1|2 is equal to
  • 6
  • 12
  • 15
  • 24
An output device that converts data from a binary format in main storage to coded hole patterns punched into a paper tape is?
  • Paper tape punch
  • Punched paper tape
  • Magnetic disk
  • Magnetic tape
  • None of the above
The 2's complement number of 110010 is?
  • 001101
  • 110011
  • 010011
  • All of the above
  • None of the above
Instructions and memory addresses are represented by.
  • Character codes
  • Binary codes
  • Binary word
  • Parity bit
  • None of the above
What is the highest address possible if 16 bits are used for each address?
  • 65536
  • 12868
  • 16556
  • 643897
  • None of the above
Multiplication of 1112 by 1012 is?
  • 1100112
  • 1000112
  • 1111002
  • 0001012
  • None of the above
The 0 and 1 in the binary numbering system are called binary digits or ____________.
  • Bytes
  • Kilobytes
  • Decimal bytes
  • Bits
  • Nibbles
The real and imaginary part of the complex number 1+i where i=1 are
  • 112 and 12 respectively
  • 112 and 12 respectively
  • 1+12 and 12 respectively
  • 1+12 and 12 respectively
Find a complex number z satisfying the equation z+\sqrt{2}|z+1|+i=0
  • 2-i
  • -2-i
  • \sqrt{2}-i
  • None of these
If { a }^{ 2 }+{ b }^{ 2 }=1, then \dfrac {\left( 1+b+ia \right) }{\left( 1+b-ia \right)} is
  • 1
  • 2
  • b+ia
  • a+ib
If \left| {z - 1} \right| = 2, then the value of z\overline z  - z - \overline z is equal to: 
  • -3
  • 4
  • 3
  • -4
The total number of even prime numbers is?
  • 0
  • 1
  • 2
  • Unlimited
The real part of (1-\cos\theta +2i \sin\theta)^{-1} is?
  • \displaystyle\frac{1}{3+5\cos\theta}
  • \displaystyle\frac{1}{5-3\cos\theta}
  • \displaystyle\frac{1}{3-5\cos\theta}
  • \displaystyle\frac{1}{5+3\cos\theta}
If \dfrac {lz_{2}}{mz_{1}} is purely imaginary number, then \left |\dfrac {\lambda z_{1} + \mu z_{2}}{\lambda z_{1} - \mu z_{2}}\right | is equal to
  • \dfrac {l}{m}
  • \dfrac {\lambda}{\mu}
  • \dfrac {-\lambda}{\mu}
  • 1
The complex number  \dfrac{1+2i}{1-i} lies in which quadrant of the compiles plan
  • First
  • Second
  • Third
  • Fourth
In binary synchronous, communication ............code is used by the receiver to check the validity of the message recovered. 
  • OK
  • ACK
  • BCC
  • SOH
Binary number are used because:
  • Decimal system can not be represented on motherboard
  • Binary data needs just 2 wires for the transmission, one for 1 & other for 0
  • Binary data is easier to represent using 'on'(1) & 'off' (0) states of switches.
  • All of these
Which of the following is NOT a binary system?
  • EBCDIC
  • ASCII
  • HEX
  • None of these
..............is a binary synchronous data transmission. 
  • Each bit is sent over a separate wire
  • Sequence numbers are sent in numbered frames
  • Each character is prefixed with DLE
  • Character are used for control purpose
Which are not property of Binary relations
  • reflexive relation, symmetric relation, anti symmetrical relation
  • reflexive, transitive, equivalence relations
  • transitive, partial ordering relation, symmetric
  • reflexive, partial, chain relation
............are the Pentium binary program that can be embedded in a web page. 
  • Servlets
  • Hyperlink
  • Hypertext
  • Active X controls
If Z satisfied   the equation  \left ( \dfrac{Z- 2}{Z + 2} \right ) \, \left ( \dfrac {{\bar Z} - 2}{{\bar Z} + 2} \right )then minimum, value of |Z| is equal to 
  • 0
  • 2
  • 4
  • 6
If \mid{z_1}\mid=2, \mid{z_2}\mid=3, \mid{z_3}\mid=4 and \mid{z_1+z_2+z_3}\mid=2, then the value of \mid{4z_2z_3+9z_3z_1+16z_1z_2}\mid.
  • 24
  • 48
  • 96
  • 120
Evaluate:
{ \left( \dfrac { cos\dfrac { \pi  }{ 8 } -isin\dfrac { \pi  }{ 8 }  }{ cos\dfrac { \pi  }{ 8 } +isin\dfrac { \pi  }{ 8 }  }  \right)  }^{ 4 }
  • 1
  • -1
  • 2
  • \dfrac { 1 }{ 2 }
| \frac{z_1 - 2z_2}{2 - z_1\bar{z}_2} | = 1 and |z_2| \neq 1 then the value of |z_1| is
  • 4
  • 2
  • 1
  • \frac{1}{2}
The complex number x+iy whose modulus is unity, y\neq 0, can be represented as x+iy=\dfrac { a+i }{ a-i },  where a is real number.
  • True
  • False
Simplify \left ( \dfrac{2i}{1 \, + \, i} \right )^2
  • i
  • 2i
  • 1 - i
  • 1 - 2i
If z_1 \, z_2 be two distinct complex numbers and let z = (1 - t) z_1 + tz_2 for some real number t with 0 < t <If arg (\omega) denotes the principal argument of a non-zero complex number (\omega), then
  • |z \, - \, z_1| \, + \, |z \, - \, z_2| \, = \, |z_2\, - \, z_1|
  • arg(z \, - \, z_1) \, = \, arg (z \, - \, z_2)
  • \begin{vmatrix} z \, - \, z_1 & \bar z \, - \, \bar{z_1}\\ z_2 \, - \, z_1 & \bar{z_2} \, - \, \bar{z_1} \end{vmatrix}
  • arg(z \, - \, z_1) \, = \, arg (z_2 \, - \, z_1)
If z is a complex number such that \left|\dfrac{z-3i}{z+3i}\right|=1 then z lies on?
  • The real axis
  • The line Im(z)=3
  • A circle
  • None of these

Let z be a complex number such that \left| z+\dfrac { 1 }{ z }  \right| =2

If \left| z \right| ={ r }_{ 1 } and \left| \dfrac { 1 }{ z }  \right| = {r}_{2} for \arg z=\dfrac { \pi  }{ 4 } then 

\left| { r }_{ 1 }-{ r }_{ 2 } \right| =

  • \dfrac { 1 }{ \sqrt { 2 } }
  • 1
  • \sqrt { 2 }
  • 2
If {z}_{1}=1+2i,\ {z}_{2}=2+3i,\ {z}_{3}=3+4i, then {z}_{1},\ {z}_{2} and {z}_{3} are collinear.
  • True
  • False
If \dfrac{2z_1}{3z_2} is a purely imaginary number,then \left|\dfrac{z_1-z_2}{z_1+z_2}\right|=
  • 3/2
  • 1
  • 2/3
  • 4/9
If z satisfies \left| {z - 1} \right| < \left| {z + 3} \right| then w = 2z + 3 - i , ( where w = 2z + 3 - i ) satisfies:
  • \left| {w - 5 - i} \right| < \left| {w + 3i} \right|
  • \left| {w - 5} \right| < \left| {w + 3} \right|
  •  \left( {iw} \right) > 1
  • \left| {\arg \left( {w - 1} \right)} \right| < {\pi  \over 2}
Find the real number x if (x-2i)(1+i) is purely imaginary.
  • 2
  • -2
  • 4
  • -4
Real part of  \dfrac{(1 + i)^2}{3 - i} =
  • -1/5
  • 1/5
  • 1/10
  • -1/10
i \, \log \left(\dfrac{x - i}{x + i}\right) is equal to
  • 2i\log (x-i)-i\log (x^2+1)
  • 2i\log (x-i)+i\log (x^2+1)
  • 2i\log (x+i)-3i\log (x^2+1)
  • 2i\log (x-i)-i\log (x^2+i)
On the complex plane locus of a point z satisfy inequality
2\le \left| z-1 \right| <3 denotes
  • region between, the concentric circles of radii 3 and 1 centered at (1,0)
  • region between the concentric circles of radii 3 and 2 centered at (1,0) excluding the inner and outer boundaries.
  • region between the concentric circles of radii 3 and 2 centered at (1,0) including the inner and outer boundaries.
  • region between, the concentric circles of radii 3 and 2 centered at (1,0) including he inner boundary and excluding the outer boundary.
The value of \dfrac{1}{i} + \dfrac{1}{{{i^2}}} + \dfrac{1}{{{i^3}}} + ... + \dfrac{1}{{i^{102}}} is equal to 
  • - 1 - i
  • - 1 + i
  • 1 - i
  • 1 + i
If i^2= -1, then 1+ i^2+ i^4 +i^6+i^8 +.............to ( 2n +1) terms is equal to
  • 0
  • 1
  • 3i
  • 4i
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers