CBSE Questions for Class 11 Commerce Applied Mathematics Number Theory Quiz 8 - MCQExams.com

If $$a+ ib= \sum_{k=1}^{101} i^k $$, then $$(a, b)$$ equals 
  • $$(0, 1)$$
  • $$(1, 0)$$
  • $$(0,- 1)$$
  • $$(1, 1)$$
If $$z = -3- i,$$ find $$|z|$$.
  • $$\sqrt{10}$$
  • $$\sqrt{9}$$
  • $$\sqrt{8}$$
  • $$\sqrt{7}$$
The real part of $$(1 - \cos\theta + 2i \sin\theta)^{-1}$$ is:
  • $$\dfrac{2\sin \theta}{(1-\cos\theta)^2+4\sin^2 \theta}$$
  • $$\dfrac{1+\cos \theta}{(1-\cos\theta)^2+4\sin^2 \theta}$$
  • $$\cfrac { \left( 1-\cos { \theta  }  \right) -2i\sin { \theta  }  }{ { \left( 1-\cos { \theta  }  \right)  }^{ 2 }+4{ i }^{ 2 }\sin ^{ 2 }{ \theta  }  }$$
  • $$\dfrac{1-\cos \theta}{(1-\cos\theta)^2+4\sin^2 \theta}$$
Which of the following pair of numbers are $$\text{relatively prime}$$ :-
  • 36 and 54
  • 52 and 78
  • 54 and 114
  • 59 and 61
$$\dfrac{{{{\left( {1 + i} \right)}^3}}}{{2 + i}}$$  is equal to
  • $$\dfrac{2}{5} - \dfrac{6}{5}i$$
  • $$0$$
  • $$ - \dfrac{1}{5} + \dfrac{6}{5}i$$
  • $$ - \dfrac{2}{5} + \dfrac{6}{5}i$$
Whether the statement is given true or false
Statement : The product of fifth roots of unity is 1.
  • True
  • False
The modulus of the complex number $$z=\dfrac{1-i}{3-4i}$$ is
  • $$\dfrac{5}{\sqrt{2}}$$
  • $$\dfrac{\sqrt{2}}{5}$$
  • $$\sqrt{\dfrac{2}{5}}$$
  • none of these
Let z be a complex number such that $$z\in c\ R$$ and $$\dfrac{1+z+z^2}{1-z+z^2}\in R$$, then  $$|z|=3$$.
  • True
  • False
If $$z=\dfrac{1+i}{\sqrt{2}}$$, then the value of $$z^{1929}$$ is
  • $$1+i$$
  • $$-1$$
  • $$\dfrac{1+i}{2}$$
  • $$\dfrac{1+i}{\sqrt{2}}$$
If $$|Z|=2,|z_{2}|=3,|z_{3}=4|$$ and $$|z_{1}+z_{2}+z_{3}|=5$$ then $$|4z_{2}z_{3}+9z_{3}z_{1}+16z_{1}z_{2}|=$$
  • $$20$$
  • $$24$$
  • $$48$$
  • $$120$$
If $$\dfrac{x - 3}{3 + i} + \dfrac{y - 3}{3 - i} = i $$ where $$x , y \in R$$ then
  • $$x = 2$$ & $$y = -8$$
  • $$x = -2$$ & $$y = 8$$
  • $$x = -2$$ & $$y = -6$$
  • $$x = 2$$ & $$y = 8$$
The locus of $$z$$ such that $$\left| {\dfrac{{z + i}}{{z - 1}}} \right| = 2$$
  • straight line
  • circle with radius $$2$$
  • circle with radius $$\frac{{2\sqrt 2 }}{3}$$
  • none of these
$$n\in N,\ { \left( \dfrac { 1+i }{ \sqrt { 2 }  }  \right)  }^{ 8n }+{ \left( \dfrac { 1-i }{ \sqrt { 2 }  }  \right)  }^{ 8n }=$$
  • $$0$$
  • $$1$$
  • $$2$$
  • $$-2$$
$$\left(\dfrac{1 + i}{1 - i}\right)^4 + \left(\dfrac{1 - i}{1 + i}\right)^4 = $$ 
  • $$0$$
  • $$1$$
  • $$2$$
  • $$4$$
The complex number $$z$$ satisfies $$z+|z|=2+8i$$. The value of $$|z|$$ is
  • $$10$$
  • $$13$$
  • $$17$$
  • $$23$$
If $$|z_1+z_2|=|z_1|+|z_2|$$ where $$z_1$$ and $$z_2$$ are different non - zero complex number, then ?
  • $$Re\left(\dfrac{z_1}{z_2}\right)=0$$
  • $$Im\left(\dfrac{z_1}{z_2}\right)=0$$
  • $$z_1+z_2=0$$
  • None
It $$z$$ be a complex number and $$\,\,\left| {\,z + 3\,} \right| \leqslant \,\,8$$ then the value of $$\left| {\,z - 2\,} \right|$$ lies in 
  • $$[-2,13]$$
  • $$[0,13]$$
  • $$[2,13]$$
  • $$[-13,2]$$
The number of prime numbers between $$1 \ and \ 10$$ is
  • $$12$$
  • $$4$$
  • $$3$$
  • $$2$$
if $$z_1=3+4i$$ and $$Im(z_1z_2)=0$$ Find $$z_2$$ 
  • $$z_2=3-4i$$
  • $$z_2=3+4i$$
  • $$z_2=3\pm 4i$$
  • None of these
Modulus of $$\dfrac{\cos \theta - i\sin \theta}{\sin \theta - i \cos \theta}$$ is
  • $$0$$
  • $$2\theta$$
  • $$\pi - 2\theta$$
  • None of these

The value of $$\sum\limits_{n = 1}^{13} {\left( {{i^n} + {i^{n + 1}}} \right)} $$, where $$i = \sqrt { - 1} $$ equals:

  • $$i$$
  • $$i - 1$$
  • $$ - i$$
  • 0
$$\left(\dfrac{1+\cos \dfrac{\pi}{8}+i\sin \dfrac{\pi}{8}}{1+\cos \dfrac{\pi}{8}-i\sin \dfrac{\pi}{8}}\right)^{8}=$$ ?
  • $$1+i$$
  • $$1-i$$
  • $$1$$
  • $$-1$$
$$3+2\ i\ \sin \theta$$ will be real, if $$\theta=$$
  • $$2n \pi $$
  • $$n \pi +\pi/2$$
  • $$n\pi$$
  • $$none\ of\ these$$
Let $$z_{r}(1 \le r \le 4)$$ be complex numbers such that $$|z_{r}|=\sqrt {r+1} and |30\ z_{1}+20\ z_{2}+15 z_{3}+12\ z_{4}|=k|z_{1}z_{2}z_{3}+z_{2}z_{3}z_{4}+z_{3}z_{4}z_{1}+z_{4}z_{1}z_{2}|$$. Then value of $$k$$ equals ?
  • $$|z_{1}z_{2}z_{3}|$$
  • $$|z_{2}z_{3}z_{4}|$$
  • $$|z_{3}z_{4}z_{1}|$$
  • $$|z_{4}z_{1}z_{2}|$$

For a complex number $$z$$, the minimum value of $$\left| z \right| + \left| {z - 1} \right|$$ is

  • 1
  • 2
  • 3
  • none of these
If $$\left| {{z_1}} \right| =  = 1,\left| {{z_2}} \right| = 2,$$, then the value of $${\left| {{z_1} + {z_2}} \right|^2} + {\left| {{z_1} - {z_2}} \right|^2}$$ is equal to 
  • $$2$$
  • $$3$$
  • $$4$$
  • none of these
If $$z_{1},\ z_{2}$$ are two complex numbers such that $$arg\left( { z }_{ 1 }+{ z }_{ 2 } \right) =0$$ and $$Im\left( { z }_{ 1 }{ z }_{ 2 } \right) =0$$, then
  • $$z_{1}=-z_{2}$$
  • $$z_{1}=z_{2}$$
  • $$z_{1}=\bar { { z }_{ 2 } } $$
  • $$none\ of\ these$$
$$\sqrt{-2}\sqrt{-3}=$$
  • -$$\sqrt{6}$$
  • $$\sqrt{6}$$
  • $$i\sqrt{6}$$
  • $$-i\sqrt{6}$$
The argument of the complex number $$\sin \dfrac {6\pi}{5}+i\left(1+\cos \dfrac {6\pi}{5}\right)$$ is
  • $$\dfrac {6\pi}{5}$$
  • $$\dfrac {5\pi}{6}$$
  • $$\dfrac {9\pi}{10}$$
  • $$\dfrac {2\pi}{5}$$
If $$\left| z \right| = 1$$, then $$\left| z - 1 \right|$$ is
  • < $$\left| arg (z) \right|$$
  • > $$\left| arg (z) \right|$$
  • = $$\left| arg (z) \right|$$
  • None of these
If z is a complex number such that $$|z|\ge 2$$, then the minimumm value of $$\left|z+\dfrac{1}{2}\right|$$:
  • is equal to $$\dfrac{5}{2}$$
  • lies in the interval $$(1,2)$$
  • is strictly greater then $$\dfrac{5}{2}$$
  • is strictly greater than $$\dfrac{3}{2}$$ but less than $$\dfrac{5}{2}$$
If $$|z|=1$$ and $$|\omega -1| =1$$ where $$z, \omega \in C$$, then the largest set of values of $$|2z - 1|^2 + | 2\omega -1|^2$$ equals  
  • $$[1, 9]$$
  • $$[2, 6]$$
  • $$[2, 12]$$
  • $$[2, 18]$$
If $$Z$$ is a complex number such that $$|z| \ge 2$$,
then the minimum value of $$\left|z + \dfrac{1}{2}\right|$$
  • Is equal to $$\dfrac{5}{2}$$
  • Lies in the interval $$(1, 2)$$
  • Is strictly grater than $$\dfrac{5}{2}$$
  • Is strictly greater than $$\dfrac{3}{2}$$ but less than $$\dfrac{5}{2}$$
if $$z_1=3+7i$$ then $$|z_1|$$ is 
  • $$\sqrt {28}$$
  • $$\sqrt {58}$$
  • $$\sqrt {68}$$
  • none of these
If $${z}_{1}$$ and $${z}_{2}$$ two complex numbers satisfying the equation $$\left| \dfrac { { z }_{ 1 }+{ iz }_{ 2 } }{ { z }_{ 1 }{ iz }_{ 2 } }  \right| =1$$ then $$\dfrac{{z}_{1}}{{z}_{2}}$$ is a
  • purely real
  • of unit modulus
  • purely imaginary
  • none of these
Mark the correct alternative of the following.
Which of the following is a prime number?
  • $$263$$
  • $$361$$
  • $$323$$
  • $$324$$
let $$|z+\bar{z}|+|z-\bar{z}|=2014$$. Then $$z$$ lies on a
  • Circle
  • Straight line
  • Square
  • Rectangle
Argument and modules of $$[\dfrac{1+i}{1-i}]^{2\pi i}$$ are respectively................. 
  • $$\dfrac{-\pi}{2}$$ and $$1$$
  • $$\dfrac{\pi}{2}$$ and $$\sqrt{2}$$
  • $$0$$ and $$\sqrt{2}$$
  • $$\dfrac{\pi}{2}$$ and $$1$$
Choose the composite numbers from the following numbers $$87, 67, 45, 34, 23, 27, 33$$.
  • $$45, 87, 34, 27, 33$$
  • $$45, 87, 67, 33$$
  • $$33, 27, 23, 34$$
  • All the above
  • None of these
If $$\left| {\dfrac{{{z_1}}}{{{z_2}}}} \right| = 1$$ and $$\arg \left( {{z_1}{z_2}} \right) = 0$$ , then
  • $${z_1} = {z_2}$$
  • $${\left| {{z_2}} \right|^2} = {z_1}{z_2}$$
  • $${z_1}{z_2} = 1$$
  • $${ z_{ 1 } }=-{ z_{ 2 } }$$
If $$x^{2}+y^{2}=1$$ and $$x \neq -1$$ then $$\dfrac {1+y+ix}{1+y-ix}$$
  • $$1$$
  • $$y+ix$$
  • $$2$$
  • $$x+ix$$
$$I_m$$ $$\left( {\sqrt {a + i\sqrt {{a^4} + {a^2} + 1} } } \right) = $$
  • $$\dfrac{1}{2}\sqrt {{a^2} - a + 1} $$
  • $$\sqrt {\dfrac{{{a^2} - a + a}}{2}} $$
  • $$\dfrac{1}{2}\sqrt {{a^2} + a + 1} $$
  • $$\sqrt {\dfrac{{{a^2} - a + 1}}{2}} $$
If for complex number $$z_{1}and   z_{2}arg(z_{1})-arg(z_{2})=0then \mid z_{ 1}-z_{2}\mid $$ is equal to:
  • $$ \mid z_{1}+z_{2}\mid $$
  • $$ \mid z_{1}\mid +\mid z_{2}\mid$$
  • $$ \parallel z_{1}\mid -\mid z_{2}\parallel$$
  • 0
If $$z=(3+7i)(p+iq)$$ where $$p,q\in I-\left\{ 0 \right\} $$, is purely imaginary then minimum value of $${ \left| z \right|  }^{ 2 }$$ is
  • $$0$$
  • $$58$$
  • $$\dfrac{3364}{3}$$
  • $$3364$$
If $$z(\neq  - 1)$$ is complex number such that $$\dfrac{z-1}{z+1}$$ is purely imaginary, then $$|z|$$ is equal to
  • $$1$$
  • $$2$$
  • $$3$$
  • $$5$$
$$z=a+ib$$, $$a,b,\in R$$, $$b\ne 0$$ and $$\left| z \right| =1$$, then $$z=\cfrac{c+i}{c-i}$$, where $$c$$ is equal to
  • $$\cfrac{a}{b}$$
  • $$\cfrac{a-1}{b}$$
  • $$\cfrac{a+1}{b}$$
  • $$\cfrac{a+1}{b+1}$$
If $$z$$ is a complex number, then $$z^{2}+\bar{z}^{2}=2$$ represents-
  • a circle
  • a straight line
  • a hyperbola
  • an ellipse
The modulus of the complex number $$z=\frac { \left( 1-i\sqrt { 3 }  \right) \left( \cos { \theta  } +isin\theta  \right)  }{ 2\left( 1-i \right) \left( \cos { \theta  } -isin\theta  \right)  } $$  is-
  • $$\frac { 1 }{ 2\sqrt { 2 } } $$
  • $$\frac { 1 }{ \sqrt { 3 } } $$
  • $$\frac { 1 }{ \sqrt { 2 } } $$
  • $$\frac { 1 }{ 2\sqrt { 3 } } $$
If $$\left| {z + 2 - i} \right| = 5$$ then the maximum value of $$\left| {3z + 9 - 7i} \right|$$ is 
  • 18
  • 19
  • 20
  • 8
If $$\left|z\right|=1$$ and $$\varpi=\dfrac{z-1}{z+1}$$, where $$z\neq-1$$, then $$Re\left(\varpi\right)$$ is
  • $$0$$
  • $$-\dfrac{1}{|z+1|^{2}}$$
  • $$\dfrac{1}{\sqrt{2}}{\left|z+1\right|^{2}}$$
  • $$\dfrac{\sqrt{2}}{|z+1|^{2}}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers