Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js

CBSE Questions for Class 11 Commerce Applied Mathematics Number Theory Quiz 8 - MCQExams.com

If a+ib=101k=1ik, then (a,b) equals 
  • (0,1)
  • (1,0)
  • (0,1)
  • (1,1)
If z=3i, find |z|.
  • 10
  • 9
  • 8
  • 7
The real part of (1cosθ+2isinθ)1 is:
  • 2sinθ(1cosθ)2+4sin2θ
  • 1+cosθ(1cosθ)2+4sin2θ
  • (1cosθ)2isinθ(1cosθ)2+4i2sin2θ
  • 1cosθ(1cosθ)2+4sin2θ
Which of the following pair of numbers are relatively prime :-
  • 36 and 54
  • 52 and 78
  • 54 and 114
  • 59 and 61
(1+i)32+i  is equal to
  • 2565i
  • 0
  • 15+65i
  • 25+65i
Whether the statement is given true or false
Statement : The product of fifth roots of unity is 1.
  • True
  • False
The modulus of the complex number z=1i34i is
  • 52
  • 25
  • 25
  • none of these
Let z be a complex number such that zc R and 1+z+z21z+z2R, then  |z|=3.
  • True
  • False
If z=1+i2, then the value of z1929 is
  • 1+i
  • 1
  • 1+i2
  • 1+i2
If |Z|=2,|z2|=3,|z3=4| and |z1+z2+z3|=5 then |4z2z3+9z3z1+16z1z2|=
  • 20
  • 24
  • 48
  • 120
If x33+i+y33i=i where x,yR then
  • x=2 & y=8
  • x=2 & y=8
  • x=2 & y=6
  • x=2 & y=8
The locus of z such that |z+iz1|=2
  • straight line
  • circle with radius 2
  • circle with radius 223
  • none of these
nN, (1+i2)8n+(1i2)8n=
  • 0
  • 1
  • 2
  • 2
(1+i1i)4+(1i1+i)4= 
  • 0
  • 1
  • 2
  • 4
The complex number z satisfies z+|z|=2+8i. The value of |z| is
  • 10
  • 13
  • 17
  • 23
If |z1+z2|=|z1|+|z2| where z1 and z2 are different non - zero complex number, then ?
  • Re(z1z2)=0
  • Im(z1z2)=0
  • z1+z2=0
  • None
It z be a complex number and |z+3| then the value of \left| {\,z - 2\,} \right| lies in 
  • [-2,13]
  • [0,13]
  • [2,13]
  • [-13,2]
The number of prime numbers between 1 \ and \ 10 is
  • 12
  • 4
  • 3
  • 2
if z_1=3+4i and Im(z_1z_2)=0 Find z_2 
  • z_2=3-4i
  • z_2=3+4i
  • z_2=3\pm 4i
  • None of these
Modulus of \dfrac{\cos \theta - i\sin \theta}{\sin \theta - i \cos \theta} is
  • 0
  • 2\theta
  • \pi - 2\theta
  • None of these

The value of \sum\limits_{n = 1}^{13} {\left( {{i^n} + {i^{n + 1}}} \right)} , where i = \sqrt { - 1} equals:

  • i
  • i - 1
  • - i
  • 0
\left(\dfrac{1+\cos \dfrac{\pi}{8}+i\sin \dfrac{\pi}{8}}{1+\cos \dfrac{\pi}{8}-i\sin \dfrac{\pi}{8}}\right)^{8}= ?
  • 1+i
  • 1-i
  • 1
  • -1
3+2\ i\ \sin \theta will be real, if \theta=
  • 2n \pi
  • n \pi +\pi/2
  • n\pi
  • none\ of\ these
Let z_{r}(1 \le r \le 4) be complex numbers such that |z_{r}|=\sqrt {r+1} and |30\ z_{1}+20\ z_{2}+15 z_{3}+12\ z_{4}|=k|z_{1}z_{2}z_{3}+z_{2}z_{3}z_{4}+z_{3}z_{4}z_{1}+z_{4}z_{1}z_{2}|. Then value of k equals ?
  • |z_{1}z_{2}z_{3}|
  • |z_{2}z_{3}z_{4}|
  • |z_{3}z_{4}z_{1}|
  • |z_{4}z_{1}z_{2}|

For a complex number z, the minimum value of \left| z \right| + \left| {z - 1} \right| is

  • 1
  • 2
  • 3
  • none of these
If \left| {{z_1}} \right| =  = 1,\left| {{z_2}} \right| = 2,, then the value of {\left| {{z_1} + {z_2}} \right|^2} + {\left| {{z_1} - {z_2}} \right|^2} is equal to 
  • 2
  • 3
  • 4
  • none of these
If z_{1},\ z_{2} are two complex numbers such that arg\left( { z }_{ 1 }+{ z }_{ 2 } \right) =0 and Im\left( { z }_{ 1 }{ z }_{ 2 } \right) =0, then
  • z_{1}=-z_{2}
  • z_{1}=z_{2}
  • z_{1}=\bar { { z }_{ 2 } }
  • none\ of\ these
\sqrt{-2}\sqrt{-3}=
  • -\sqrt{6}
  • \sqrt{6}
  • i\sqrt{6}
  • -i\sqrt{6}
The argument of the complex number \sin \dfrac {6\pi}{5}+i\left(1+\cos \dfrac {6\pi}{5}\right) is
  • \dfrac {6\pi}{5}
  • \dfrac {5\pi}{6}
  • \dfrac {9\pi}{10}
  • \dfrac {2\pi}{5}
If \left| z \right| = 1, then \left| z - 1 \right| is
  • < \left| arg (z) \right|
  • > \left| arg (z) \right|
  • = \left| arg (z) \right|
  • None of these
If z is a complex number such that |z|\ge 2, then the minimumm value of \left|z+\dfrac{1}{2}\right|:
  • is equal to \dfrac{5}{2}
  • lies in the interval (1,2)
  • is strictly greater then \dfrac{5}{2}
  • is strictly greater than \dfrac{3}{2} but less than \dfrac{5}{2}
If |z|=1 and |\omega -1| =1 where z, \omega \in C, then the largest set of values of |2z - 1|^2 + | 2\omega -1|^2 equals  
  • [1, 9]
  • [2, 6]
  • [2, 12]
  • [2, 18]
If Z is a complex number such that |z| \ge 2,
then the minimum value of \left|z + \dfrac{1}{2}\right|
  • Is equal to \dfrac{5}{2}
  • Lies in the interval (1, 2)
  • Is strictly grater than \dfrac{5}{2}
  • Is strictly greater than \dfrac{3}{2} but less than \dfrac{5}{2}
if z_1=3+7i then |z_1| is 
  • \sqrt {28}
  • \sqrt {58}
  • \sqrt {68}
  • none of these
If {z}_{1} and {z}_{2} two complex numbers satisfying the equation \left| \dfrac { { z }_{ 1 }+{ iz }_{ 2 } }{ { z }_{ 1 }{ iz }_{ 2 } }  \right| =1 then \dfrac{{z}_{1}}{{z}_{2}} is a
  • purely real
  • of unit modulus
  • purely imaginary
  • none of these
Mark the correct alternative of the following.
Which of the following is a prime number?
  • 263
  • 361
  • 323
  • 324
let |z+\bar{z}|+|z-\bar{z}|=2014. Then z lies on a
  • Circle
  • Straight line
  • Square
  • Rectangle
Argument and modules of [\dfrac{1+i}{1-i}]^{2\pi i} are respectively................. 
  • \dfrac{-\pi}{2} and 1
  • \dfrac{\pi}{2} and \sqrt{2}
  • 0 and \sqrt{2}
  • \dfrac{\pi}{2} and 1
Choose the composite numbers from the following numbers 87, 67, 45, 34, 23, 27, 33.
  • 45, 87, 34, 27, 33
  • 45, 87, 67, 33
  • 33, 27, 23, 34
  • All the above
  • None of these
If \left| {\dfrac{{{z_1}}}{{{z_2}}}} \right| = 1 and \arg \left( {{z_1}{z_2}} \right) = 0 , then
  • {z_1} = {z_2}
  • {\left| {{z_2}} \right|^2} = {z_1}{z_2}
  • {z_1}{z_2} = 1
  • { z_{ 1 } }=-{ z_{ 2 } }
If x^{2}+y^{2}=1 and x \neq -1 then \dfrac {1+y+ix}{1+y-ix}
  • 1
  • y+ix
  • 2
  • x+ix
I_m \left( {\sqrt {a + i\sqrt {{a^4} + {a^2} + 1} } } \right) =
  • \dfrac{1}{2}\sqrt {{a^2} - a + 1}
  • \sqrt {\dfrac{{{a^2} - a + a}}{2}}
  • \dfrac{1}{2}\sqrt {{a^2} + a + 1}
  • \sqrt {\dfrac{{{a^2} - a + 1}}{2}}
If for complex number z_{1}and   z_{2}arg(z_{1})-arg(z_{2})=0then \mid z_{ 1}-z_{2}\mid is equal to:
  • \mid z_{1}+z_{2}\mid
  • \mid z_{1}\mid +\mid z_{2}\mid
  • \parallel z_{1}\mid -\mid z_{2}\parallel
  • 0
If z=(3+7i)(p+iq) where p,q\in I-\left\{ 0 \right\} , is purely imaginary then minimum value of { \left| z \right|  }^{ 2 } is
  • 0
  • 58
  • \dfrac{3364}{3}
  • 3364
If z(\neq  - 1) is complex number such that \dfrac{z-1}{z+1} is purely imaginary, then |z| is equal to
  • 1
  • 2
  • 3
  • 5
z=a+ib, a,b,\in R, b\ne 0 and \left| z \right| =1, then z=\cfrac{c+i}{c-i}, where c is equal to
  • \cfrac{a}{b}
  • \cfrac{a-1}{b}
  • \cfrac{a+1}{b}
  • \cfrac{a+1}{b+1}
If z is a complex number, then z^{2}+\bar{z}^{2}=2 represents-
  • a circle
  • a straight line
  • a hyperbola
  • an ellipse
The modulus of the complex number z=\frac { \left( 1-i\sqrt { 3 }  \right) \left( \cos { \theta  } +isin\theta  \right)  }{ 2\left( 1-i \right) \left( \cos { \theta  } -isin\theta  \right)  }   is-
  • \frac { 1 }{ 2\sqrt { 2 } }
  • \frac { 1 }{ \sqrt { 3 } }
  • \frac { 1 }{ \sqrt { 2 } }
  • \frac { 1 }{ 2\sqrt { 3 } }
If \left| {z + 2 - i} \right| = 5 then the maximum value of \left| {3z + 9 - 7i} \right| is 
  • 18
  • 19
  • 20
  • 8
If \left|z\right|=1 and \varpi=\dfrac{z-1}{z+1}, where z\neq-1, then Re\left(\varpi\right) is
  • 0
  • -\dfrac{1}{|z+1|^{2}}
  • \dfrac{1}{\sqrt{2}}{\left|z+1\right|^{2}}
  • \dfrac{\sqrt{2}}{|z+1|^{2}}
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers