Explanation
We have,
(1+i√2)8n+(1−i√2)8n
[(1+i√2)2]4n+[(1−i√2)2]4n
=[12+i2+2i2]4n+[12+i2−2i2]4n
=[1−1+2i2]4n+[1−1−2i2]4n
=(i4)n+((−i)4)n
=1n+1n
=1+1
=2
The value of \sum\limits_{n = 1}^{13} {\left( {{i^n} + {i^{n + 1}}} \right)} , where i = \sqrt { - 1} equals:
For a complex number z, the minimum value of \left| z \right| + \left| {z - 1} \right| is
{\textbf{Step - 1: Writing the product in terms of i (iota)}}
{\text{We know that, }}\sqrt {{\text{ - 1}}} {\text{ = i and }}\sqrt {{\text{ab}}} {\text{ = }}\sqrt {\text{a}} \sqrt {\text{b}}
\therefore {\text{ }}\sqrt {{\text{ - 2}}} {\text{ = }}\sqrt {{\text{ - 1}}} \sqrt {\text{2}} {\text{ = i}}\sqrt 2 \quad \quad \quad \text{.....eqn(i)}
{\text{and }}\sqrt {{\text{ - 3}}} {\text{ = }}\sqrt {{\text{ - 1}}} \sqrt {\text{3}} {\text{ = i}}\sqrt {\text{3}} \quad \quad \quad \text{.....eqn(ii)}
{\textbf{Step - 2: Multiplying the terms}}
\sqrt {{\text{ - 2}}} \sqrt {{\text{ - 3}}} {\text{ = }}\left( {{\text{i}}\sqrt {\text{2}} } \right)\left( {{\text{i}}\sqrt {\text{3}} } \right) \quad \quad \quad \textbf{[From eqn(i) and eqn(ii)]}
\Rightarrow {\text{ }}\sqrt {{\text{ - 2}}} \sqrt {{\text{ - 3}}} {\text{ = }}{{\text{i}}^{\text{2}}}\sqrt {{\text{3}} \times 2}
\Rightarrow {\text{ }}\sqrt {{\text{ - 2}}} \sqrt {{\text{ - 3}}} {\text{ = - }}\sqrt {\text{6}} {\quad \quad \quad \quad \quad \quad \textbf{ [}}\because {\text{ }}{{\textbf{i}}^{\textbf{2}}}{\textbf{ = - 1]}}
\mathbf{{\text{Thus, the value of the product }}\sqrt {{\text{ - 2}}} \sqrt {{\text{ - 3}}} {\text{ is -}}\sqrt {\text{6}} }
Please disable the adBlock and continue. Thank you.