Explanation
We have,
$${{\left( \dfrac{1+i}{\sqrt{2}} \right)}^{8n}}+{{\left( \dfrac{1-i}{\sqrt{2}} \right)}^{8n}}$$
$$ {{\left[ {{\left( \dfrac{1+i}{\sqrt{2}} \right)}^{2}} \right]}^{4n}}+{{\left[ {{\left( \dfrac{1-i}{\sqrt{2}} \right)}^{2}} \right]}^{4n}} $$
$$ ={{\left[ \dfrac{{{1}^{2}}+{{i}^{2}}+2i}{2} \right]}^{4n}}+{{\left[ \dfrac{{{1}^{2}}+{{i}^{2}}-2i}{2} \right]}^{4n}} $$
$$ ={{\left[ \dfrac{1-1+2i}{2} \right]}^{4n}}+{{\left[ \dfrac{1-1-2i}{2} \right]}^{4n}} $$
$$ ={{\left( {{i}^{4}} \right)}^{n}}+{{\left( {{\left( -i \right)}^{4}} \right)}^{n}} $$
$$ ={{1}^{n}}+{{1}^{n}} $$
$$ =1+1 $$
$$ =2 $$
The value of $$\sum\limits_{n = 1}^{13} {\left( {{i^n} + {i^{n + 1}}} \right)} $$, where $$i = \sqrt { - 1} $$ equals:
For a complex number $$z$$, the minimum value of $$\left| z \right| + \left| {z - 1} \right|$$ is
$${\textbf{Step - 1: Writing the product in terms of i (iota)}}$$
$${\text{We know that, }}\sqrt {{\text{ - 1}}} {\text{ = i and }}\sqrt {{\text{ab}}} {\text{ = }}\sqrt {\text{a}} \sqrt {\text{b}} $$
$$\therefore {\text{ }}\sqrt {{\text{ - 2}}} {\text{ = }}\sqrt {{\text{ - 1}}} \sqrt {\text{2}} {\text{ = i}}\sqrt 2 $$ $$\quad \quad \quad \text{.....eqn(i)}$$
$${\text{and }}\sqrt {{\text{ - 3}}} {\text{ = }}\sqrt {{\text{ - 1}}} \sqrt {\text{3}} {\text{ = i}}\sqrt {\text{3}} $$ $$\quad \quad \quad \text{.....eqn(ii)}$$
$${\textbf{Step - 2: Multiplying the terms}}$$
$$\sqrt {{\text{ - 2}}} \sqrt {{\text{ - 3}}} {\text{ = }}\left( {{\text{i}}\sqrt {\text{2}} } \right)\left( {{\text{i}}\sqrt {\text{3}} } \right)$$ $$\quad \quad \quad \textbf{[From eqn(i) and eqn(ii)]}$$
$$ \Rightarrow {\text{ }}\sqrt {{\text{ - 2}}} \sqrt {{\text{ - 3}}} {\text{ = }}{{\text{i}}^{\text{2}}}\sqrt {{\text{3}} \times 2} $$
$$ \Rightarrow {\text{ }}\sqrt {{\text{ - 2}}} \sqrt {{\text{ - 3}}} {\text{ = - }}\sqrt {\text{6}} {\quad \quad \quad \quad \quad \quad \textbf{ [}}\because {\text{ }}{{\textbf{i}}^{\textbf{2}}}{\textbf{ = - 1]}}$$
$$\mathbf{{\text{Thus, the value of the product }}\sqrt {{\text{ - 2}}} \sqrt {{\text{ - 3}}} {\text{ is -}}\sqrt {\text{6}} }$$
Please disable the adBlock and continue. Thank you.