Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

CBSE Questions for Class 11 Commerce Applied Mathematics Number Theory Quiz 9 - MCQExams.com

What is the modulus of following complex number:2+23i

  • 4
  • 5
  • 2
  • 3
If a+ib=c+1c1, where c is real number, then a2+b2=1 and ba=2cc21
  • True
  • False
Which of the following is a pair of twin-prime number ? 
  • 19,21
  • 43,47
  • 59,61
  • 73,79
If z=(3+7i)(p+iq), where p,qI{0}, is a purely imaginary, then minimum value of |z|2 is
  • 0
  • 58
  • 33643
  • 3364
If z=32+12i then zˉz is
  • 1
  • 0
  • 1
  • 2
Let A={zc:|z|=25} and B={zc:|z+5+12i|=4. Then the minimum value of |zw| for ZA and ωB is :
  • 7
  • 8
  • 9
  • 6
Solve i57+1i125
  • 0
  • 2i
  • 2i
  • 2
The value of the sum 13n=1(in+in+1), where i=1, is?
  • i
  • i1
  • i
  • 0
If z1 and z2 be complex numbers such that z1z2 and |z1|=|z2|. If z1 has positive real part and z2 has negative imarinary part, then (z1+z2)(z1z2) may be
  • Purely imaginary
  • Real and positive
  • Real and negative
  • zero
If z1andz2areonstraightline |12(z1+z2)+z1z2|+|12(z1+z2)z1z2|=
  • |z1+z2|
  • |z1z2|
  • |z1|+|z2|
  • |z1||z2|
If |z1+z2|=|z1z2|, then the different in the amplitudes of z1 and z2 is
  • π4
  • π3
  • π2
  • 0
For any two complex numbers z1 and z2, then Re(z1z2)=Rez1Rez2lnz1lnz2
  • True
  • False
The value of 2x4+5x3+7x2x+41, when x=23i is:
  • -4
  • 4
  • -6
  • 6
If the six solutions of x6=64 are written in the form a+bi, where a and b are real, then the product those solution with a<0, is
  • 4
  • 8
  • 16
  • 64
If z1 and z2 two non-zero complex number such that |z1+z2|=|z1|+|z2|, then argz1argz2 is equal to
  • p
  • p/2
  • p/2
  • 0
Ifz1 and z2 are two complex number such that Im(z1=z2)= 0= Im (z1z2), then 
  • z1=z2
  • z1=¯z2
  • z1=z2
  • z1=¯z2
z is a complex number. If a=|x|+|y| and
b=2|x+iy| then which of the following is
true

  • ab
  • a>b
  • none of these
  • ab+2
If z=(3+4i)6+(34i)6, where i=1, then Im(z) equals to 
  • 6
  • 0
  • 6
  • None of these
Number of complex numbers z such that |z|=1 and |zz+ˉzz|=1 is
  • 4
  • 1
  • 8
  • more then 8
If a complex number z and z+1z have same argument then- 
  • z must be purely real
  • z must be purely imaginary
  • z cannot be imaginary
  • z must be raal
Let P(x)=x36x2+Bx+C has 1+5i as a zero and B,C real number, then value of (B+C) is
  • -70
  • 70
  • 24
  • 138
A value of θ for which2+3isinθ12isinθ is purely imaginary, is:
  • sin1(13)
  • π3
  • cos11
  • Noneofthese
Let  |zi|=i,i=1,2,3,4  and  |16z1z2z3+9z1z2z4+4z1z3z4+z2z3z4|=48,  then the value of    |1¯z1+4¯z2+9¯z3+16¯z4|.
  • 1
  • 2
  • 4
  • 8
If z satisfies |z2+2i|1
  • |z|least=221
  • |z|least=22+1
  • |z1|1
  • None of these
If z+1z+i is purely imaginary, then z lies on a 
  • straight lone
  • circle
  • Circle with radius 1
  • circle passing through (1, 1).
Purely imaginary then find the sum of statement i a,b 
  • 5π6
  • π
  • 3π4
  • 2π3
If α and β are the roots of 4x216x+c=0, c>0 such that 1<α<2<β<3, then the no.of integer values of c is 
  • 17
  • 14
  • 18
  • 15
(log3tanx)  is real for:
  • nπ+π/4x<nπ+π/2
  • nπ<x<nπ+π/2
  • nπ±π/4x<nπ±π/2
  • None of these.
All even numbers are prime numbers.
  • True
  • False
Which of the following is not a composite

number?




  • 2×3×5×13×17+13
  • 7×6×5×4×3×2×1+5
  • 17×41×43×61+43
  • 2×3×43+13
If |z3+2i|4 then the difference between the greatest value and the least value of |z| is :
  • 213
  • 8
  • 4+13
  • 13
Find the value of x3+7x2x+16, when x=1+2i
  • 11+24i
  • 17+24i
  • 1724i
  • 1+24i
Let 'z' be a complex number satisfying |z2i|5, Then |z-14-6i| lies in 
  • {8,18}
  • {2,8}
  • {0,2}
  • {3,7}
If  w=zz13i  and  |w|=1  then  z  lies on
  • a circle
  • an ellipse
  • a parabola
  • a straight line
The real part of  [1+cos(π5)+isin(π5)]1  is
  • 1
  • 12
  • 12cos(π10)
  • 12cos(π5)
12i2+i+4i3+2i=
  • 2413+1113i
  • 24131113i
  • 1013+2413i
  • 10132413i
The principle amplitude of (sin40o+icos40o)5 is
  • 70o
  • 1100o
  • 70110
  • 7070
If |z-3i|<\sqrt{5}, then |i(z+1)+1|<2\sqrt{5}.
  • True
  • False
IF z_1=1+i,z_2=1-i find z_1z_2
  • z_1+z_2
  • z_1-z_2
  • z_1/z_2
  • None.
The value of the sum \sum _{ n=1 }^{ 13 }{ ({ i }^{ n }+{ i }^{ n+1 }) }  , where i=\sqrt { -1 }  , equals
  • i
  • i-1
  • -i
  • 0
z_1 and z_2 are two non-zero complex numbers such that z_1=2+4i\\z_2=5-6i, then z_2-z_1 equals
  • 3-10i
  • 3+10i
  • 7-2i
  • 10-24i
The imaginary part of t ; t \in R is 
  • 0
  • 1
  • 2
  • -1
How many prime numbers are there in the following series.
1,2,7,9,13,15,21,23,27,29
  • 7
  • 6
  • 5
  • 4
The real value of '\theta ', for which the expression \frac { 1+i\cos { \theta  }  }{ 1-2i\cos { \theta  }  }  is a real number is
  • 2n\pi +\frac { 3\pi }{ 2 } ,n\in I
  • 2n\pi -\frac { 3\pi }{ 2 } ,n\in I
  • 2n\pi \pm \frac { \pi }{ 2 } ,n\in I
  • 2n\pi +\frac { \pi }{ 4 } ,n\in I
The greatest and least value of \left | z \right | if z satisfies \left | z - 5 + 5i \right | \leq 5 are 
  • 10 , 5\sqrt{2}
  • 5\sqrt{2} , 5
  • 10 , 0
  • 5 + 5\sqrt{2} , 5\sqrt{2} - 5
let z=\left| \begin{matrix} 1 & 1+2i & -5i \\ 1-2i & -3 & 5+3i \\ 5i & 5-3i & 7 \end{matrix} \right| then
  • z is purely real
  • z is purely imaginary
  • \left( z-\bar { z } \right) i is real and imaginary both
  • \left( z+\bar { z } \right) =0
Which of the following is a prime number 
  • 391
  • 899
  • 621
  • 199
Given z _ { 1 } + 3 z _ { 2 } - 4 z _ { 3 } = 0 then z _ { 1 } , z _ { 2 } , z _ { 3 } are
  • collinear
  • can form sides of equilateral \Delta
  • lie on circle
  • none of these
The imaginary roots of the equation { ({ x }^{ 2 }+2) }^{ 2 }+8{ x }^{ 2 }=6x({ x }^{ 2 }+2) are ____________.
  • 1+i
  • 2\pm i
  • -1\pm i
  • none of these
If z be a complex number satisfying z^{4}+z^{3}+2z^{2}+z+1=0 then \left|z\right|=
  • \dfrac{1}{2}
  • \dfrac{3}{4}
  • 1
  • none of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers