Processing math: 7%

CBSE Questions for Class 11 Commerce Applied Mathematics Number Theory Quiz 9 - MCQExams.com

What is the modulus of following complex number:2+23i

  • 4
  • 5
  • 2
  • 3
If a+ib=c+1c1, where c is real number, then a2+b2=1 and ba=2cc21
  • True
  • False
Which of the following is a pair of twin-prime number ? 
  • 19,21
  • 43,47
  • 59,61
  • 73,79
If z=(3+7i)(p+iq), where p,qI{0}, is a purely imaginary, then minimum value of |z|2 is
  • 0
  • 58
  • 33643
  • 3364
If z=32+12i then zˉz is
  • 1
  • 0
  • 1
  • 2
Let A = \left\{ {z \in c:\left| z \right|} \right. = 2\left. 5 \right\} and B = \left\{ {z \in c:\left| {z + 5 + 12i} \right|} \right. = 4. Then the minimum value of \left| {z - w} \right| for Z \in A and \omega  \in B is :
  • 7
  • 8
  • 9
  • 6
Solve i^{57}+\dfrac{1}{i^{125}}
  • 0
  • 2i
  • -2i
  • 2
The value of the sum \displaystyle\sum^{13}_{n=1}\left(i^n+i^{n+1}\right), where i=\sqrt{-1}, is?
  • i
  • i-1
  • -i
  • 0
If {z_1} and {z_2} be complex numbers such that {z_1} \ne {z_2} and \left| {{z_1}} \right| = \left| {{z_2}} \right|. If {z_1} has positive real part and {z_2} has negative imarinary part, then \frac{{\left( {{z_1} + {z_2}} \right)}}{{\left( {{z_1} - {z_2}} \right)}} may be
  • Purely imaginary
  • Real and positive
  • Real and negative
  • zero
If z_{1} and z_{2} are on straight line \left| \frac { 1 } { 2 } \left( z _ { 1 } + z _ { 2 } \right) + \sqrt { z _ { 1 } z _ { 2 } } \right| + \left| \frac { 1 } { 2 } \left( z _ { 1 } + z _ { 2 } \right) - \sqrt { z _ { 1 } z _ { 2 } } \right| =
  • \left| z _ { 1 } + z _ { 2 } \right|
  • \left| z _ { 1 } - z _ { 2 } \right|
  • \left| z _ { 1 } \right| + \left| z _ { 2 } \right|
  • \left| z _ { 1 } \right| - \left| z _ { 2 } \right|
If |z_{1}+z_{2}|=|z_{1}-z_{2}|, then the different in the amplitudes of z_{1} and z_{2} is
  • \dfrac {\pi}{4}
  • \dfrac {\pi}{3}
  • \dfrac {\pi}{2}
  • 0
For any two complex numbers z_{1} and z_{2}, then Re(z_{1}z_{2})=Rez_{1} Rez_{2}-\ln z_{1} \ln z_{2}
  • True
  • False
The value of 2x^{4}+5x^{3}+7x^{2}-x+41, when x=-2-\sqrt{3i} is:
  • -4
  • 4
  • -6
  • 6
If the six solutions of x^6 = -64 are written in the form a + bi, where a and b are real, then the product those solution with a < 0, is
  • 4
  • 8
  • 16
  • 64
If z_{1} and z_{2} two non-zero complex number such that |z_{1}+z_{2}|=|z_{1}|+|z_{2}|, then arg z_{1}-arg z_{2} is equal to
  • -p
  • p/2
  • -p/2
  • 0
If{ z }_{ 1 } and { z }_{ 2 } are two complex number such that Im({ z }_{ 1 }={ z }_{ 2 })= 0= Im ({ z }_{ 1 }{ z }_{ 2 }), then 
  • { z }_{ 1 }={ z }_{ 2 }
  • { z }_{ 1 }={ \overline { z } }_{ 2 }
  • { z }_{ 1 }={ -z }_{ 2 }
  • { z }_{ 1 }=-{ \overline { z } }_{ 2 }
z is a complex number. If a = | x | + | y | and
b = \sqrt { 2 } | x + i y | then which of the following is
true

  • a \leq b
  • a > b
  • none of these
  • a - b + 2
If z=(3+4i)^6+(3-4i)^6, where i=\sqrt { -1 }, then Im(z) equals to 
  • -6
  • 0
  • 6
  • None of these
Number of complex numbers z such that |z|=1 and \left|\dfrac {z}{z}+\dfrac {\bar {z}}{z}\right|=1 is
  • 4
  • 1
  • 8
  • more\ then\ 8
If a complex number z and z+\dfrac { 1 }{ z } have same argument then- 
  • z must be purely real
  • z must be purely imaginary
  • z cannot be imaginary
  • z must be raal
Let P\left( x \right) ={ x }^{ 3 }-6{ x }^{ 2 }+Bx+C has 1+5i as a zero and B,C real number, then value of (B+C) is
  • -70
  • 70
  • 24
  • 138
A value of \theta for which\dfrac { 2+3isin\theta  }{ 1-2isin\theta  } is purely imaginary, is:
  • { sin }^{ -1 }\left( \dfrac { 1 }{ \sqrt { 3 } } \right)
  • \dfrac { \pi }{ 3 }
  • cos^{-1}\sqrt-1
  • None of these
Let  \left| z _ { i } \right| = i , i = 1,2,3,4  and  \left| 16 z _ { 1 } z _ { 2 } z _ { 3 } + 9 z _ { 1 } z _ { 2 } z _ { 4 } + 4 z _ { 1 } z _ { 3 } z _ { 4 } + z _ { 2 } z _ { 3 } z _ { 4 } \right| = 48 ,  then the value of    \left| \dfrac { 1 }{ \overline { z } _{ { 1 } } } +\dfrac { 4 }{ \overline { z } _{ { 2 } } } +\dfrac { 9 }{ \overline { z } _{ { 3 } } } +\dfrac { 16 }{ \overline { z } _{ { 4 } } }  \right| .
  • 1
  • 2
  • 4
  • 8
If z satisfies |z - 2+ 2i| \le 1
  • |z|_{least} = 2\sqrt{2} - 1
  • |z|_{least} = 2\sqrt{2} + 1
  • |z - 1| \le 1
  • None of these
If \dfrac { z+1 }{ z+i } is purely imaginary, then z lies on a 
  • straight lone
  • circle
  • Circle with radius 1
  • circle passing through (1, 1).
Purely imaginary then find the sum of statement i a,b 
  • \dfrac {5\pi}{6}
  • \pi
  • \dfrac {3\pi}{4}
  • \dfrac {2\pi}{3}
If \alpha and \beta are the roots of { 4x }^{ 2 }-16x+c=0, c>0 such that 1<\alpha <2<\beta <3, then the no.of integer values of c is 
  • 17
  • 14
  • 18
  • 15
\sqrt { \left( \log _ { 3 } \tan x \right) }  is real for:
  • n \pi + \pi / 4 \leq x < n \pi + \pi / 2
  • n \pi < x < n \pi + \pi / 2
  • n \pi \pm \pi / 4 \leq x < n \pi \pm \pi / 2
  • None of these.
All even numbers are prime numbers.
  • True
  • False
Which of the following is not a composite

number?




  • 2 \times 3 \times 5\times 13\times 17 + 13
  • 7\times 6\times 5\times 4\times 3\times 2\times 1 + 5
  • 17\times 41\times 43\times 61 + 43
  • 2 \times 3\times 43 + 13
If \left| {z - 3 + 2i} \right|\, \le 4 then the difference between the greatest value and the least value of \left| z \right| is :
  • 2\sqrt {13}
  • 8
  • 4 + \sqrt {13}
  • \sqrt {13}
Find the value of {x}^{3}+7{x}^{2}-x+16, when x=1+2i
  • -11+24i
  • -17+24i
  • -17-24i
  • -1+24i
Let 'z' be a complex number satisfying |z-2-i|\le 5, Then |z-14-6i| lies in 
  • {8,18}
  • {2,8}
  • {0,2}
  • {3,7}
If  w = \dfrac { z } { z - \dfrac { 1 } { 3 } i }  and  | w | = 1  then  z  lies on
  • a circle
  • an ellipse
  • a parabola
  • a straight line
The real part of  \left[ 1 + \cos \left( \dfrac { \pi } { 5 } \right) + i \sin \left( \dfrac { \pi } { 5 } \right) \right] ^ { - 1 }  is
  • 1
  • \dfrac { 1 } { 2 }
  • \dfrac { 1 } { 2 } \cos \left( \dfrac { \pi } { 10 } \right)
  • \dfrac { 1 } { 2 } \cos \left( \dfrac { \pi } { 5 } \right)
\dfrac{1-2i}{2+i}+\dfrac{4-i}{3+2i}=
  • \dfrac{24}{13}+\dfrac{11}{13}i
  • \dfrac{24}{13}-\dfrac{11}{13}i
  • \dfrac{10}{13}+\dfrac{24}{13}i
  • \dfrac{10}{13}-\dfrac{24}{13}i
The principle amplitude of (\sin 40^{o}+i \cos 40^{o})^{5} is
  • 70^{o}
  • -1100^{o}
  • 70^{110}
  • 70^{-70}
If |z-3i|<\sqrt{5}, then |i(z+1)+1|<2\sqrt{5}.
  • True
  • False
IF z_1=1+i,z_2=1-i find z_1z_2
  • z_1+z_2
  • z_1-z_2
  • z_1/z_2
  • None.
The value of the sum \sum _{ n=1 }^{ 13 }{ ({ i }^{ n }+{ i }^{ n+1 }) }  , where i=\sqrt { -1 }  , equals
  • i
  • i-1
  • -i
  • 0
z_1 and z_2 are two non-zero complex numbers such that z_1=2+4i\\z_2=5-6i, then z_2-z_1 equals
  • 3-10i
  • 3+10i
  • 7-2i
  • 10-24i
The imaginary part of t ; t \in R is 
  • 0
  • 1
  • 2
  • -1
How many prime numbers are there in the following series.
1,2,7,9,13,15,21,23,27,29
  • 7
  • 6
  • 5
  • 4
The real value of '\theta ', for which the expression \frac { 1+i\cos { \theta  }  }{ 1-2i\cos { \theta  }  }  is a real number is
  • 2n\pi +\frac { 3\pi }{ 2 } ,n\in I
  • 2n\pi -\frac { 3\pi }{ 2 } ,n\in I
  • 2n\pi \pm \frac { \pi }{ 2 } ,n\in I
  • 2n\pi +\frac { \pi }{ 4 } ,n\in I
The greatest and least value of \left | z \right | if z satisfies \left | z - 5 + 5i \right | \leq 5 are 
  • 10 , 5\sqrt{2}
  • 5\sqrt{2} , 5
  • 10 , 0
  • 5 + 5\sqrt{2} , 5\sqrt{2} - 5
let z=\left| \begin{matrix} 1 & 1+2i & -5i \\ 1-2i & -3 & 5+3i \\ 5i & 5-3i & 7 \end{matrix} \right| then
  • z is purely real
  • z is purely imaginary
  • \left( z-\bar { z } \right) i is real and imaginary both
  • \left( z+\bar { z } \right) =0
Which of the following is a prime number 
  • 391
  • 899
  • 621
  • 199
Given z _ { 1 } + 3 z _ { 2 } - 4 z _ { 3 } = 0 then z _ { 1 } , z _ { 2 } , z _ { 3 } are
  • collinear
  • can form sides of equilateral \Delta
  • lie on circle
  • none of these
The imaginary roots of the equation { ({ x }^{ 2 }+2) }^{ 2 }+8{ x }^{ 2 }=6x({ x }^{ 2 }+2) are ____________.
  • 1+i
  • 2\pm i
  • -1\pm i
  • none of these
If z be a complex number satisfying z^{4}+z^{3}+2z^{2}+z+1=0 then \left|z\right|=
  • \dfrac{1}{2}
  • \dfrac{3}{4}
  • 1
  • none of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers