Explanation
we have,
z is a complex number.
Then,
Let z=rcosθ+isinθ
Now, we know that,
¯z=r(cosθ−isinθ)
So,
z¯z=r2
1z=¯zz¯z=¯zr2
Now,
According to given question,
z+1z=|z+1z|=1(zandz+1zsame argument)
=|r(cosθ+isinθ)+r(cosθ−isinθ)r2|=1
=|(r+1r)cosθ+i(r−1r)sinθ|=1
Now, squaring both side and we get,
|(r2+1r2+2)cos2θ+i2(r2+1r2−2)sin2θ|=1
(r2+1r2+2)cos2θ=1
r2+1r2+2cos2θ=1
r2+1r2=1−2cos2θ
1−2cos2θ=0
⇒cos2θ=12
⇒cos2θ=cosπ3
⇒2θ=π3
⇒θ=π6
Then, Z is purely imaginary.
Hence, this is the answer.
We have,
2+3isinθ1−2isinθ
On rationalize and we get,
2+3isinθ1−2isinθ×1+2isinθ1+2isinθ
⇒2+3isinθ+4isinθ+6i2sin2θ12−4i2sin2θ
⇒2−sin2θ+7isinθ1+4sin2θ
⇒1+1−sin2θ+7isinθ1+4sin2θ
⇒1+cos2θ+7isinθ1+4sin2θ
⇒1+cos2θ1+4sin2θ+7isinθ1+4sin2θ
⇒1+cos2θ1+4sin2θ+i7sinθ1+4sin2θ
Then purely imaginary is
Real part of equal to zero.
1+cos2θ1+4sin2θ=0
⇒1+cos2θ=0
⇒cos2θ=−1
⇒cosθ=√−1
⇒θ=cos−1√−1
Please disable the adBlock and continue. Thank you.