CBSE Questions for Class 11 Commerce Applied Mathematics Relations Quiz 6 - MCQExams.com

  • Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
  • Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
  • Assertion is incorrect but Reason is correct
  • Both Assertion and Reason are incorrect
If $$\displaystyle A=\left \{ 0,1,2,3,4,5 \right \}$$ and relation $$R$$ defined by $$a R b$$ such that $$2a+b=10$$ then $$ R^{-1}$$ equals
  • $$\displaystyle \left \{ (4,3),(2,4) ,(5,0) \right \}$$
  • $$\displaystyle \left \{ (3,4),(4,2) ,(5,0) \right \}$$
  • $$\displaystyle \left \{ (4,3),(2,4) ,(0,5) \right \}$$
  • $$\displaystyle \left \{ (4,3),(4,2) ,(5,0) \right \}$$
If $$\displaystyle R=\{ (x,y):x, y \in Z ,x^{2}+y^{2}\leq 4 \}$$ is a relation in $$Z$$ then domain $$D$$ is
  • $$\displaystyle \left \{ -2,-1,0,1,2\right \}$$
  • $$\displaystyle \left \{ -2,-1,0 \right \}$$
  • $$\displaystyle \left \{ 0,1,2\right \}$$
  • None of these
If $$\displaystyle A= \left \{ a,b,c,d \right \}, B= \left \{ 1,2,3 \right \}$$ find whether or not the following sets of ordered pairs are relations from $$A$$ to $$B$$ or not.
$$\displaystyle R_{1}= \left \{ \left ( a,1 \right ), \left ( a,3 \right ) \right \}$$
$$\displaystyle R_{2}= \left \{ \left ( a,1 \right ), \left ( c,2 \right ), \left ( d,1 \right ) \right \}$$
$$\displaystyle R_{3}= \left \{ \left ( a,1 \right ), \left ( b,2 \right ), \left ( 3,c \right ) \right \}.$$
  • $$R_{1}$$ $$R_{2}$$ are relations but $$R_{3}$$ is not a relation.
  • $$R_{1}$$ $$R_{3}$$ are relations but $$R_{2}$$ is not a relation.
  • All are relations
  • none of these
If ,$$(x-1, y+2)= (7, 5)$$ then values of $$x$$ and $$y$$ are
  • $$5$$,$$8$$
  • $$8$$,$$3$$
  • $$-1$$,$$5$$
  • $$7$$,$$1$$
State whether the following statement is True or False.
If (x, y) = (3, 5) ; then x= 3 and y = 5
  • True
  • False
Ordered pairs (a, 3) and (5, x) are equal ,the values of $$a$$ and $$x$$ are
  • $$2$$ and $$4$$
  • $$3$$ and $$6$$
  • $$5$$ and $$3$$
  • $$1$$ and $$-1$$
If $$(x, y) = (3, 5)$$ ; then values of $$x$$  and $$y $$ are 
  • 3 and 5
  • 4 and 7
  • -1 and 17
  • 2 and 4
Given $$M = (0, 1, 2)$$ and $$N = (1, 2, 3)$$. Find $$(N - M) \times (N \cap M)$$
  • {(3, 1), (3, 2)}
  • {(3, -1), (3, -2)}
  • {(-3, -1), (-3, 2)}
  • {(3, -1), (-3, -2)}
If $$A = \{5, 7\}, B= \{7, 9\}$$ and $$C = \{7, 9, 11\},$$ find $$A \times (B \cup C)$$
  • $$ \{(5, 7), (5, 9), (5, 11), (7, 7), (7, 9), (7, 11) \}$$
  • $$ \{(5, 5), (5, 9), (5, 11), (7, 7), (7, 9), (7, 11) \}$$
  • $$ \{(5, 7), (9, 9), (5, 11), (7, 7), (7, 9), (7, 11) \}$$
  • none of these
If $$R$$ be a relation defined from $$\displaystyle A=\left \{ 1,2,3,4 \right \}$$ to $$\displaystyle B=\left \{ 1,3,5 \right \},i.e.\left ( a,b \right )\in R$$ iff $$a<b$$ then $$\displaystyle R o R^{-1}$$ is
  • $$\displaystyle \left \{ \left ( 1,3 \right ),\left ( 1,5 \right ),\left ( 2,3 \right ),\left ( 2,5 \right ),\left ( 3,5 \right ),\left ( 4,5 \right ) \right \}$$
  • $$\displaystyle \left \{ \left ( 3,1 \right ),\left ( 5,1 \right )\left ( 3,2 \right ),\left ( 5,2 \right ) ,\left ( 5,3 \right ),\left ( 5,4 \right )\right \}$$
  • $$\displaystyle \left \{ \left ( 3,3 \right ),\left ( 3,5 \right ) ,\left ( 5,3 \right ),\left ( 5,5 \right )\right \}$$
  • $$\displaystyle \left \{ \left ( 3,3 \right ),\left ( 3,4 \right ) ,\left ( 4,5 \right )\right \}$$
Given $$\displaystyle A=\left \{ 2, 3 \right \},B=\left \{ 4, 5 \right \},C=\left \{ 5, 6 \right \},$$ find $$\displaystyle A\times \left ( B\cap C \right )=.........$$
  • $$\displaystyle A\times \left ( B\cap C \right )=\left \{ \left ( 2, 4 \right ),\left ( 3, 5 \right ) \right \}$$
  • $$\displaystyle A\times \left ( B\cap C \right )=\left \{ \left ( 2, 5 \right ),\left ( 3, 5 \right ) \right \}$$
  • $$\displaystyle A\times \left ( B\cap C \right )=\left \{ \left ( 2, 5 \right ),\left ( 4, 5 \right ) \right \}$$
  • $$\displaystyle A\times \left ( B\cap C \right )=\left \{ \left ( 2, 3 \right ),\left ( 3, 5 \right ) \right \}$$
State True or False
Let $$A = \{1, 2\}$$ and $$B = \{2, 3, 4\}$$, then A $$\times$$ B = B $$\times$$ A ?
  • True
  • False
$$A$$ and $$B$$ are two sets having $$3$$ and $$5$$ elements respectively and having $$2$$ elements in common. Then the number of elements in $$\displaystyle A\times B$$ is
  • $$6$$
  • $$36$$
  • $$15$$
  • none of these
Let $$R$$ be a relation from a set $$A$$ to a set $$B$$,then
  • $$\displaystyle R=A\cup B$$
  • $$\displaystyle R=A\cap B$$
  • $$\displaystyle R\subseteq A\times B$$
  • $$\displaystyle R\subseteq B\times A$$
If $$\displaystyle A=\left \{ 2, 4 \right \}$$ and  $$B\left \{ 3, 4, 5 \right \},$$ then $$\displaystyle \left ( A\cap B \right )\times \left ( A\cup B \right )$$ is
  • $$\displaystyle \left \{ \left ( 2, 2 \right ),\left ( 3, 4 \right ),\left ( 4, 2 \right ),\left ( 5, 4 \right ) \right \}$$
  • $$\displaystyle \left \{ \left ( 2, 3 \right ),\left ( 4, 3 \right ),\left ( 4, 5 \right ) \right \}$$
  • $$\displaystyle \left \{ \left ( 2, 4 \right ),\left ( 3, 4 \right ),\left ( 4, 4 \right ),\left ( 4, 5 \right ) \right \}$$
  • $$\displaystyle \left \{ \left ( 4, 2 \right ),\left ( 4, 3 \right ),\left ( 4, 4 \right ),\left ( 4, 5 \right ) \right \}$$
Let $$\displaystyle A=\left \{ 1, 2, 3, 4, 5 \right \}, B=\left \{ 2, 3, 6, 7 \right \}.$$ Then the number of elements in $$\displaystyle \left ( A\times B \right )\cap \left ( B\times A \right )$$ is
  • $$18$$
  • $$6$$
  • $$4$$
  • $$0$$
If $$\displaystyle A=\left \{ a, b, c \right \},B=\left \{ c, d, e \right \},C=\left \{ a, d, f \right \}$$, then $$A\times \left ( B\cup C \right )$$ is
  • $$\displaystyle \left \{ \left ( a, d \right ),\left ( a, e \right ),\left ( a, c \right ) \right \}$$
  • $$\displaystyle \left \{ \left ( a, d \right ),\left ( b, d \right ),\left ( c, d \right ) \right \}$$
  • $$\displaystyle \left \{ \left ( d, a \right ),\left ( d, b \right ),\left ( d, c \right ) \right \}$$
  • none of these
If $$\displaystyle X= \left \{ 1,2,3,4,5 \right \}, Y= \left \{ 1,3,5,7,9 \right \}$$ determine which of the following sets are mappings, relations or neither from A to B:
(i)$$\displaystyle F= \left \{ \left ( x,y \right ) \because y= x+2, x \in X, y \in Y \right \}$$
  • It is clearly a one-one onto mapping i.e. a bijection. It is also a relation.
  • It is clearly a many-one onto mapping. It is also a relation.
  • It is clearly a one-one but not onto mapping. It is also a relation.
  • It is not a mapping but a relation
If $$\displaystyle A=\left \{ 1, 2, 3 \right \}$$ and $$B=\left \{ 3, 8 \right \},$$ then $$\displaystyle \left ( A\cup B \right )\times \left ( A\cap B \right )$$ is
  • $$\displaystyle \left \{ \left ( 3, 1 \right ), \left ( 3,2 \right ), \left ( 3, 3 \right ), \left ( 3, 8 \right ) \right \}$$
  • $$\displaystyle \left \{ \left ( 1, 3 \right ), \left ( 2,3 \right ), \left ( 3, 3 \right ), \left ( 8, 3\right ) \right \}$$
  • $$\displaystyle \left \{ \left ( 1, 2 \right ), \left ( 2,2 \right ), \left ( 3, 3 \right ), \left ( 8, 8\right ) \right \}$$
  • $$\displaystyle \left \{ \left ( 8, 3 \right ), \left ( 8,2 \right ), \left ( 8, 1 \right ), \left ( 8, 8\right ) \right \}$$
Let $$A$$ and $$B$$ be two finite sets having $$m$$ and $$n$$ elements respectively. Then the total number of mapping from $$A$$ to $$B$$ is:
  • $$mn$$
  • $$2^{mn}$$
  • $$m^{n}$$
  • $$n^{m}$$
Let $$R$$ be a reflexive on a finite set $$A$$ having $$n$$ elements, and let there be $$m$$ ordered pairs in $$R$$. Then
  • $$m\ge n$$
  • $$m\le n$$
  • $$m=n$$
  • None of these
If $$A=\{a,b,c,d\}, B=\{p,q,r,s\}$$, then which of the following are relations from $$A$$ to $$B$$? 
  • $$\displaystyle R_{1}= \left \{ \left ( a,p \right ), \left ( b,r \right ), \left ( c,s \right ) \right \}$$
  • $$\displaystyle R_{2}= \left \{ \left ( q,b \right ), \left ( c,s \right ), \left ( d,r \right ) \right \}$$
  • $$\displaystyle R_{3}= \left \{ \left ( a,p \right ), \left ( a,q \right ), \left ( d,p \right ), \left ( c,r \right ), \left ( b,r \right ) \right \}$$
  • $$\displaystyle R_{4}= \left \{ \left ( a,p \right ), \left ( q,a \right ), \left ( b,s \right ), \left ( s,b \right ) \right \}$$
N is the set of positive integers and $$\displaystyle \sim $$ be a relation on $$\displaystyle N\times N\:defined\:\left ( a,b \right )\sim \left ( c,d \right )$$ iff ad=bc.
Check the relation for being an equivalence relation. 
  • True
  • False
A relation $$R$$ is defined on the set $$Z$$ of integers as follows: R=$$(x,y)$$ $$\displaystyle \in {R}:x^{2}+y^{2}= 25$$. Express $$R$$ and $$\displaystyle R^{-1}$$ as the sets of ordered pairs and hence find their respective domains.
  • $$0$$
  • Domain of $$\displaystyle R= \left \{ 0, \pm 3 \right \}= $$ domain of $$\displaystyle R^{-1}.$$
  • Domain of $$\displaystyle R= \left \{ 0, \pm 3, \pm 4 \right \}= $$ domain of $$\displaystyle R^{-1}.$$
  • Domain of $$\displaystyle R= \left \{ 0, \pm 3, \pm 4, \pm 5 \right \}= $$ domain of $$\displaystyle R^{-1}.$$
If $$A=\left\{ 2,3 \right\} $$ and $$B=\left\{ 1,2,3,4 \right\} $$, then which of the following is not a subset of $$A\times B$$
  • $$\left\{ (2,3),(2,4),(3,3),(3,4) \right\} $$
  • $$\left\{ (2,2),(3,1),(3,4),(2,3) \right\} $$
  • $$\left\{ (2,1),(3,2) \right\} $$
  • $$\left\{ (1,2),(2,3) \right\} $$
In order that a relation $$R$$ defined in a non-empty set $$A$$ is an equivalence relation, it is sufficient that $$R$$
  • is reflexive
  • is symmetric
  • is transitive
  • possess all the above three properties
Which one of the following relations on $$R$$ is equivalence redlation-
  • $$x{R}_{1}y\Leftrightarrow \left| x \right| =\left| y \right| $$
  • $$x{R}_{2}y\Leftrightarrow \left| x \right| > \left| y \right| $$
  • $$x{R}_{3}y\Leftrightarrow x|y$$
  • $$x{R}_{4}y\Leftrightarrow x< y$$
$$A$$ and $$B$$ are two sets having $$3$$ and $$4$$ elements respectively and having $$2$$ elements in common. The number of relations which can be defined from $$A$$ to $$B$$ is
  • $${2}^{5}$$
  • $${2}^{10}-1$$
  • $${2}^{12}-1$$
  • None of these
If $$A=\left\{ 2,4,5 \right\} , B=\left\{ 7,8,9 \right\} $$ then $$n(A\times B)$$ is equal to-
  • $$6$$
  • $$9$$
  • $$3$$
  • $$0$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers