Loading [MathJax]/jax/element/mml/optable/MathOperators.js

CBSE Questions for Class 11 Commerce Applied Mathematics Set Theory Quiz 10 - MCQExams.com

In a survey it was found that 21 people liked product A, 26 liked product B and 29 liked product C. If 14 people liked products A and B, 12 people liked products C and A, 14 people liked products B and C and 8 liked all the three products. Find how many liked product C only.
  • 10
  • 11
  • 12
  • 13
In a battle 70% of the combatants lost one eye, 80% an ear, 75% an arm, 85% a leg and x% lost all the four limbs the minimum value of x is 
  • 10
  • 12
  • 15
  • none of these
The number of subsets R of P=(1,2,3,....,9) which satisfies the property "There exit integers a<b<c with aR, bR,cR" is
  • 512
  • 466
  • 467
  • None of these
If A={3,{4,5},6}, then the statement is true or false
{3}A
  • True
  • False
In a universal set x,n\left( x \right) = 50 ,n\left( A \right) = 35 , n\left( B \right) = 20 , n\left( {A' \cap B'} \right) = 5 ,then n\left( {A \cup B} \right),n\left( {A \cap B} \right) are repsectively 
  • 45,10
  • 10,45
  • 25,30
  • 15,25
If p and q are two proposition, then \sim(p\leftrightarrow q) is 
  • \sim p \wedge \sim q
  • \sim p \vee \sim q
  • (p \wedge \sim q) \vee (\sim p \wedge q)
  • none of these
If  A  and  B  are two non empty sets then  ( A \cup B ) ^ { C } = ?
  • A ^ { C } \cup B ^ { C }
  • A ^ { C } \cap B ^ { C }
  • A \cup B ^ { C }
  • A ^ { C } \cap B
Let S={1,2,3,.....10} and P={1,2,3,4,5} The number of subsets 'Q' of S such that p \cup Q=S, are.....
  • 128
  • 256
  • 32
  • 64
If 'p' is true and 'q' is false, then which of the following statement is not true?
  • p\vee q
  • p\Rightarrow q
  • p\wedge (\sim q)
  • q\Rightarrow p
If the number of 5 elements subsets of the set A\left\{\ a_{1},a_{2}.....a_{20}\right\} of 20 distinct elements is k times the number of 5 elements subsets containing a_{4}, then k is 
  • 5
  • \dfrac{20}{7}
  • 4
  • \dfrac{10}{3}
Let A and B be two sets. A \cap B = \{1, 2\}, A \cup B = \{1, 2, 3, 4, 5\} and if n_1 is the maximum number of function from A to B and n_2 is the minimum number of function form A to B then n_1 - n_2 equals
  • 32
  • 56
  • 64
  • 81
The value of set (A\cup B\cup C)\cap(A\cap B^1\cap C^1)^1\cap C^1 is equal to  
  • B\cap C^1
  • A\cap C
  • B\cap C^1
  • A\cap C^1
If two sets P and Q,n\left(P\right)=5,n\left(Q\right)=4 then n\left(P\times Q\right)=
  • 20
  • 9
  • 25
  • 5/4
The statement that is true among the following is 
  • p\Longrightarrow q is equivalent to p\wedge -q
  • p\vee q and p\wedge q have the same truth value
  • The converse of tanx=0\Longrightarrow x=0 is x\neq 0\Longrightarrow tanx=0
  • The contrapositive of 3x+2=8\Longrightarrow x=2 is x\neq 2\Longrightarrow 3x+2\neq 8
Let  Q  be a non empty subset of  N  and  q  is a statement as given below :
q:  There exists an even number  a \in Q  Negation of the statement  q  will be :
  • There is no even number in the set Q
  • Every a \in Q is an odd number.
  • (a) and (b) both
  • None of these
If A= {1, 2, 5} and B= {3, 4, 5, 9}, then A \bigcup B is equal to :
  • \{1, 2, 5, 9\}
  • \{1, 2, 3, 4, 9\}
  • \{1, 2, 3, 4, 5, 9\}
  • None of these
In a battle 70% of the combatants lost one eye, 80% an ear, 75% an arm, 85% a leg, x% lost all the four limbs the minimum value of x is
  • 10
  • 12
  • 15
  • 5
Two sets A and B are defined as follows
A=\left\{ \left( x,y \right) :y={ e }^{ 2x },x\in R \right\}  and 
B=\left\{ \left( x,y \right) :y={ x }^{ 2 },x\in R \right\} , then
  • A\subset B
  • B\subset A
  • A\bigcup B
  • A\cap B=\phi
If A=\left\{1,2,3,4\right\}; B=\left\{2,4,6,8\right\}; C=\left\{3,4,5,8\right\} then A\cap B\cap C=
  • \phi
  • {4}
  • \mu
  • {2,4}
Examine whether the following statements are true or false:
\left\{b, c\right\}\subset \left\{a, \left\{b, c\right\}\right\}
  • True
  • False
In a group of 800 people, 550 can speak Hindi and 450 can speak English. How many can speak both Hindi and English ?
  • 100
  • 150
  • 200
  • None of these
Let A,B are two sets such that n(A)=4 and n(B)=Then the least possible number of elements in the power set of (A\cup B) is 
  • 16
  • 64
  • 256
  • 1024
Left A = {1, 2, 3, 4, 5, 6} and B= {1, 2, 3, 4}  be two sets, then the number of functions that can be defined from A to B such that the element '2' in B has exactly 3 pre - images i A, is equal ot
  • 540
  • 440
  • 810
  • 620
if universal set \sum { =\left\{ a,b,c,d,e,f,g,h, \right\} A=\left\{ b,c,d,e,f \right\}  } and\quad C=\left\{ c,d,e,f,g \right\} ,\quad then\quad find\quad B-A
  • \left\{ b,c,e,f \right\}
  • \left\{ a,b,f,h \right\}
  • \left\{ a,g,h \right\}
  • \left\{ a,c,e,g \right\}
If P(S) denotes the set of all subsets of a given set S, then the number of one to one function from the set s={1,2,3} to the set of P(S) is 
  • 336

  • 8
  • 36
  • 320
The function f(x) satisfies the condition (x-2)f(x)+2f\left(\dfrac{1}{x}\right)=2 for all x\neq 0. Then the value of f(2) is 
  • \dfrac{1}{2}
  • 1
  • \dfrac{7}{4}
  • \dfrac{-3}{2}
If A=\left\{1, 2, 3, 4\right\}, then the number of subsets of A that contain the element 2 but not 3, is 
  • 16
  • 4
  • 8
  • 24
Let p and q be two statements. amongst the following, the statement is equivalent to p\rightarrow q is
  • \displaystyle p\wedge \sim q
  • \displaystyle \sim p\vee q
  • \displaystyle \sim p\wedge q
  • \displaystyle p\vee \sim q
Let \displaystyle S=\left\{a\in N,a\le100\right\} if the equation \displaystyle[{\tan}^{2}x]-\tan x-a=0 has real roots, then the number of elements S is (when [.] is greatest integer function)
  • 10
  • 1
  • 9
  • 0
If A=\left\{ 1,3,5,7,9,11,13,15,17 \right\} ,B=\left\{ 2,4,....,18 \right\} and N is the universal set, then A'\cup \left( \left( A\cup B \right) \cap B' \right)
  • A
  • N
  • B
  • R
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers