CBSE Questions for Class 11 Commerce Applied Mathematics Set Theory Quiz 10 - MCQExams.com

In a survey it was found that 21 people liked product A, 26 liked product B and 29 liked product C. If 14 people liked products A and B, 12 people liked products C and A, 14 people liked products B and C and 8 liked all the three products. Find how many liked product C only.
  • 10
  • 11
  • 12
  • 13
In a battle $$70\% $$ of the combatants lost one eye, $$80\% $$ an ear, $$75\% $$ an arm, $$85\% $$ a leg and $$x\% $$ lost all the four limbs the minimum value of $$x$$ is 
  • $$10$$
  • $$12$$
  • $$15$$
  • $$none\ of\ these$$
The number of subsets $$ R$$ of $$P=(1,2,3,....,9)$$ which satisfies the property "There exit integers a<b<c with a$$\in $$R, b$$\in $$R,c$$\in $$R" is
  • $$512$$
  • $$466$$
  • $$467$$
  • None of these
If $$A=\left\{3, \left\{ 4, 5\right\}, 6\right\}$$, then the statement is true or false
$$\left\{ 3\right\} \subseteq A$$
  • True
  • False
In a universal set x,$$n\left( x \right) = 50$$ ,$$n\left( A \right) = 35$$ , $$n\left( B \right) = 20$$ , $$n\left( {A' \cap B'} \right) = 5$$ ,then $$n\left( {A \cup B} \right),n\left( {A \cap B} \right)$$ are repsectively 
  • $$45,10$$
  • $$10,45$$
  • $$25,30$$
  • $$15,25$$
If $$p$$ and $$q$$ are two proposition, then $$\sim(p\leftrightarrow q)$$ is 
  • $$\sim p \wedge \sim q$$
  • $$\sim p \vee \sim q$$
  • $$(p \wedge \sim q) \vee (\sim p \wedge q)$$
  • $$none of these$$
If  $$A$$  and  $$B$$  are two non empty sets then  $$( A \cup B ) ^ { C } = ?$$
  • $$A ^ { C } \cup B ^ { C }$$
  • $$A ^ { C } \cap B ^ { C }$$
  • $$A \cup B ^ { C }$$
  • $$A ^ { C } \cap B$$
Let $$S={1,2,3,.....10}$$ and $$P={1,2,3,4,5}$$ The number of subsets $$'Q'$$ of $$S$$ such that $$p \cup Q=S$$, are.....
  • $$128$$
  • $$256$$
  • $$32$$
  • $$64$$
If 'p' is true and 'q' is false, then which of the following statement is not true?
  • $$p\vee q$$
  • $$p\Rightarrow q$$
  • $$p\wedge (\sim q)$$
  • $$q\Rightarrow p$$
If the number of $$5$$ elements subsets of the set $$A\left\{\ a_{1},a_{2}.....a_{20}\right\}$$ of $$20$$ distinct elements is $$k$$ times the number of $$5$$ elements subsets containing $$a_{4}$$, then $$k$$ is 
  • $$5$$
  • $$\dfrac{20}{7}$$
  • $$4$$
  • $$\dfrac{10}{3}$$
Let $$A$$ and $$B$$ be two sets. $$A \cap B = \{1, 2\}, A \cup B = \{1, 2, 3, 4, 5\}$$ and if $$n_1$$ is the maximum number of function from $$A$$ to $$B$$ and $$n_2$$ is the minimum number of function form $$A$$ to $$B$$ then $$n_1 - n_2$$ equals
  • $$32$$
  • $$56$$
  • $$64$$
  • $$81$$
The value of set $$(A\cup B\cup C)\cap(A\cap B^1\cap C^1)^1\cap C^1$$ is equal to  
  • $$B\cap C^1$$
  • $$A\cap C$$
  • $$B\cap C^1$$
  • $$A\cap C^1$$
If two sets $$P$$ and $$Q,n\left(P\right)=5,n\left(Q\right)=4$$ then $$n\left(P\times Q\right)=$$
  • $$20$$
  • $$9$$
  • $$25$$
  • $$5/4$$
The statement that is true among the following is 
  • $$p\Longrightarrow q$$ is equivalent to $$p\wedge -q$$
  • $$p\vee q$$ and $$p\wedge q$$ have the same truth value
  • The converse of $$tanx=0\Longrightarrow x=0$$ is $$x\neq 0\Longrightarrow tanx=0$$
  • The contrapositive of $$3x+2=8\Longrightarrow x=2$$ is $$x\neq 2\Longrightarrow 3x+2\neq 8$$
Let  $$Q$$  be a non empty subset of  $$N$$  and  $$q$$  is a statement as given below :
$$q:$$  There exists an even number  $$a \in Q$$  Negation of the statement  $$q$$  will be :
  • There is no even number in the set $$Q$$
  • Every $$a \in Q$$ is an odd number.
  • $$(a)$$ and $$(b)$$ both
  • None of these
If A= {1, 2, 5} and B= {3, 4, 5, 9}, then $$A \bigcup B$$ is equal to :
  • $$\{1, 2, 5, 9\}$$
  • $$\{1, 2, 3, 4, 9\}$$
  • $$\{1, 2, 3, 4, 5, 9\}$$
  • None of these
In a battle $$70$$% of the combatants lost one eye, $$80$$% an ear, $$75$$% an arm, $$85$$% a leg, $$x$$% lost all the four limbs the minimum value of $$x$$ is
  • $$10$$
  • $$12$$
  • $$15$$
  • $$5$$
Two sets A and B are defined as follows
$$A=\left\{ \left( x,y \right) :y={ e }^{ 2x },x\in R \right\} $$ and 
$$B=\left\{ \left( x,y \right) :y={ x }^{ 2 },x\in R \right\} $$, then
  • $$A\subset B$$
  • $$B\subset A$$
  • $$A\bigcup B$$
  • $$A\cap B=\phi $$
If $$A=\left\{1,2,3,4\right\}; B=\left\{2,4,6,8\right\}; C=\left\{3,4,5,8\right\}$$ then $$A\cap B\cap C=$$
  • $$\phi$$
  • $${4}$$
  • $$\mu$$
  • $${2,4}$$
Examine whether the following statements are true or false:
$$\left\{b, c\right\}\subset \left\{a, \left\{b, c\right\}\right\}$$
  • True
  • False
In a group of 800 people, 550 can speak Hindi and 450 can speak English. How many can speak both Hindi and English ?
  • $$100$$
  • $$150$$
  • $$200$$
  • None of these
Let A,B are two sets such that n(A)=4 and n(B)=Then the least possible number of elements in the power set of $$(A\cup B)$$ is 
  • 16
  • 64
  • 256
  • 1024
Left A = {1, 2, 3, 4, 5, 6} and B= {1, 2, 3, 4}  be two sets, then the number of functions that can be defined from A to B such that the element '2' in B has exactly 3 pre - images i A, is equal ot
  • 540
  • 440
  • 810
  • 620
if universal set $$\sum { =\left\{ a,b,c,d,e,f,g,h, \right\} A=\left\{ b,c,d,e,f \right\}  } and\quad C=\left\{ c,d,e,f,g \right\} ,\quad then\quad find\quad B-A$$
  • $$\left\{ b,c,e,f \right\} $$
  • $$\left\{ a,b,f,h \right\} $$
  • $$\left\{ a,g,h \right\} $$
  • $$\left\{ a,c,e,g \right\}$$
If P(S) denotes the set of all subsets of a given set S, then the number of one to one function from the set s={1,2,3} to the set of P(S) is 
  • 336

  • 8
  • 36
  • 320
The function $$f(x)$$ satisfies the condition $$(x-2)f(x)+2f\left(\dfrac{1}{x}\right)=2$$ for all $$x\neq 0$$. Then the value of $$f(2)$$ is 
  • $$\dfrac{1}{2}$$
  • $$1$$
  • $$\dfrac{7}{4}$$
  • $$\dfrac{-3}{2}$$
If $$A=\left\{1, 2, 3, 4\right\}$$, then the number of subsets of $$A$$ that contain the element $$2$$ but not $$3$$, is 
  • $$16$$
  • $$4$$
  • $$8$$
  • $$24$$
Let $$p$$ and $$q$$ be two statements. amongst the following, the statement is equivalent to $$p\rightarrow q$$ is
  • $$\displaystyle p\wedge \sim q$$
  • $$\displaystyle \sim p\vee q$$
  • $$\displaystyle \sim p\wedge q$$
  • $$\displaystyle p\vee \sim q$$
Let $$\displaystyle S=\left\{a\in N,a\le100\right\}$$ if the equation $$\displaystyle[{\tan}^{2}x]-\tan x-a=0$$ has real roots, then the number of elements $$S$$ is (when $$[.]$$ is greatest integer function)
  • $$10$$
  • $$1$$
  • $$9$$
  • $$0$$
If $$A=\left\{ 1,3,5,7,9,11,13,15,17 \right\} ,B=\left\{ 2,4,....,18 \right\} $$ and N is the universal set, then $$A'\cup \left( \left( A\cup B \right) \cap B' \right) $$
  • A
  • N
  • B
  • R
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers