CBSE Questions for Class 11 Commerce Applied Mathematics Set Theory Quiz 5 - MCQExams.com

How many students in this group are not taking any of the three subjects?
  • 8
  • 9
  • 10
  • 11
Let $$\displaystyle A= \left \{ 7,8,9,a,b,c \right \} $$ and $$\displaystyle B= \left \{ 1,2,3,4 \right \} $$ then number of universal relation from the set $$A$$ to set $$B$$ and set $$B$$ to set $$A$$ are
  • equal in counting
  • can not be equal in counting
  • $$24$$
  • $$\displaystyle 2^{6}\times 2^{4} $$
If two intersecting circles with two points in common are drawn then how many common chords can be drawn? Draw the figure and write the answer
  • Only one.
  • Many.
  • Three.
  • None of the options.
Which of the following sets is/are empty?
  • $$\displaystyle \left \{ x : x \in R ,x^{2} -4=0\right \}$$
  • $$\displaystyle \left \{ x : x \in R ,x^{4} +4=0\right \}$$
  • $$\displaystyle \left \{ x : x \in R ,x^{3} =1\right \}$$
  • $$\displaystyle \left \{ x : x \in R ,x^{8}+x^{4}+1=0 \right \}$$
The set of natural number is subset of set of real numbers.
State true or false:
  • True
  • False
  • Ambiguous
  • Data insufficient
$$\displaystyle \left \{ \left ( 1, 2 \right ) \right \}, and B=\left \{ 1, 3 \right \}, then\left ( A\times B \right )\cup \left ( B\times A \right )$$ $$\displaystyle =\left \{ \left ( 1, 3 \right ), \left ( 2, 3 \right ), \left ( 3, 1 \right ), \left ( 3, 2 \right ), \left ( 1, 1 \right ), \left ( 1, 2 \right ), \left ( 2, 1 \right ),\right \}$$
  • True
  • False
True or false :
$$\displaystyle A\times \left ( B\cap C \right )=\left ( A\times B \right )\cap \left ( A\times C \right )$$
  • True
  • False
Given the universal set $$B = \{-7,-3,-1,0,5,6,8,9\}$$, find :
$$B = \{x : -4 < x < 6\}$$
  • $$\{ -7, 0, 5,6\}$$
  • $$\{5,6,8,9\}$$
  • $$\{-3, -1, 0, 5\}$$
  • $$\{0,5\}$$
$$A=\left\{ x:x\neq x \right\} $$ represents-
  • $$\left\{ 0 \right\} $$
  • $$\left\{ \right\} $$
  • $$\left\{ 1 \right\} $$
  • $$\left\{ x \right\} $$
Which of the following statements is false?
  • $$2$$ $$\in$$ {first five counting numbers.}
  • $$f$$ $${\notin }  $$ {consonants}
  • Rose $${\notin }$$ {the set of all fruits.}
  • Asia $${\in }$$ {Continents}
Let $$A = \{2,3,5,7,8,11\}$$ then which among the following is true?
  • $${7\notin A}$$
  • $$\{2,3\} \not\subset \ of \  A$$
  • $$ 2 \in A$$
  • None of the above
Which of the following statements is true
  • $$3\subseteq \left\{ 1,3,5 \right\} $$
  • $$3\in \left\{ 1,3,5 \right\} $$
  • $$\left\{ 3 \right\} \in \left\{ 1,3,5 \right\} $$
  • $$\left\{ 3,5 \right\} \in \left\{ 1,3,5 \right\} $$
Let $$P = \{ x | x$$ is a multiple of $$3$$ and less than $$100 $$ ,$$x$$ $$\displaystyle \in $$ $$N \}$$
$$Q = \{ x | x$$ is a multiple of $$10$$ and less than $$100$$, $$x$$ $$\displaystyle \in$$ $$N\}$$
  • $$\displaystyle Q\subset P$$
  • $$\displaystyle P\cup Q=$$ $$\{ x | x$$ is multiple of 30$$ ;$$ $$\displaystyle x \in N$$$$\}$$
  • $$\displaystyle P\cap Q=\phi $$
  • $$\displaystyle P\cap Q= $$ $$\{ x | x$$ is a multiple of 30$$ ; $$ $$\displaystyle x\in N$$$$\}$$
The set of real numbers r satisfying
$$\displaystyle \frac{3 r^2- 8r+5}{4r^2-3r+7}>0$$ is
  • the set of all real numbers
  • the set of all positive real numbers
  • the set of all real numbers strictly between 1 and 5/3
  • the set of all real numbers which are either less than 1 or greater than 5/3
Find the set of all solutions of the equation $$2^{\left | y \right |}-\left | 2^{y-1}-1 \right |=2^{y-1}+1$$, the solution includes
  • $$y =-1$$
  • $$y>1$$
  • $$y=1$$
  • $$y<1$$
If X and Y are two sets then $$\displaystyle X\cap (Y\cup X)'$$ equals:
  • $$X$$
  • $$Y$$
  • $$\displaystyle \phi $$
  • $$\{ 0 \}$$
If $$Q=\{ x:x=\cfrac { 1 }{ y },$$ where $$ y\in N \} $$, then
  • $$0\in Q$$
  • $$1\in Q$$
  • $$2\in Q$$
  • $$\cfrac{2}{3} \in Q$$
reflexive, symmetric and transitive.
  • $$\displaystyle R_{3}= \left \{ \left ( 1,1 \right ), \left ( 2,2 \right ), \left ( 3,3 \right ), \left ( 4,4 \right ), \left ( 1,2 \right ), \left ( 2,1 \right ) \right \}$$
  • $$\displaystyle R_{3}= \left \{ \left ( 1,1 \right ), \left ( 2,2 \right ), \left ( 3,3 \right ), \left ( 4,4 \right ), \left ( 1,2 \right ), \left ( 2,1 \right ),\left ( 1,3 \right ),\left ( 3,1 \right ),\left ( 4,1 \right ),\left ( 1,4 \right ) \right \}$$
  • $$\displaystyle R_{3}= \left \{ \left ( 1,1 \right ), \left ( 2,2 \right ), \left ( 3,3 \right ), \left ( 4,4 \right ) \right \}$$
  • none of these
Given $$\displaystyle \xi $$ = {x : x is a natural number}
A = {x : x is an even number x $$\displaystyle \in $$ N}
B = {x : x is an odd number, x $$\displaystyle \in $$ N}
Then $$\displaystyle (B\cap A)-(x-A)=....$$
  • $$\displaystyle \phi $$
  • $$A$$
  • $$B$$
  • $$A-B$$
Which of the following statements is true ?
  • $$\displaystyle 3\quad \subseteq \quad \left\{ 1,3,5 \right\} $$
  • $$\displaystyle 3\quad \in \quad \left\{ 1,3,5 \right\} $$
  • $$\displaystyle \{ 3\} \quad \in \quad \left\{ 1,3,5 \right\} $$
  • $$\displaystyle \{ 3,5\} \quad \in \quad \left\{ 1,3,5 \right\} $$
$$\displaystyle A=\left\{ x:x\neq x \right\} $$ represents:
  • $${0}$$
  • $$\phi$$
  • $${1}$$
  • $${x}$$
If n (A) = 120, N(B) = 250 and n (A - B) = 52, then find $$\displaystyle n(A\cup B)$$
  • $$302$$
  • $$250$$
  • $$368$$
  • None of the above
The solution set of $$x+2<9$$ over a set of positive even integers is 
  • $$\displaystyle \left \{ 8,10,12,... \right \}$$
  • $$\displaystyle \left \{ 2,4,6 \right \}$$
  • $$\displaystyle \left \{ 1,2,3,4,5,6 \right \}$$
  • $$\displaystyle \left \{ 2,4,6,8 \right \}$$
The solution set of $$3 x - 4 < 8$$ over the set of non-negative square numbers is 
  • $$\displaystyle \left \{ 1,2,3 \right \}$$
  • $$\displaystyle \left \{ 1,4 \right \}$$
  • $$\displaystyle \left \{ 1 \right \}$$
  • $$\displaystyle \left \{ 16 \right \}$$
Let $$P$$ and $$Q$$ be two sets then what is $$\displaystyle (P\cap Q')\cup (P\cup Q)'$$ equal to ?
  • $$\displaystyle (P\cap Q')\cup (P\cup Q)'=\xi \cap Q'=\xi \cap Q'=\xi $$
  • $$\displaystyle (P\cup Q')\cup (P\cup Q)'=\xi \cap Q'=\xi \cap Q'=\xi $$
  • $$\displaystyle (P\cap Q')\cup (P\cap Q)'=\xi \cap Q'=\xi \cap Q'=\xi $$
  • none of the above
If $$A$$ and $$B$$ are finite sets which of the following is the correct statement?
  • $$n(A - B) = n(A) - n(B)$$
  • $$n(A - B) = n(B - A)$$
  • $$n(A - B) = n(A) -$$ $$\displaystyle n\left ( A\cap B \right )$$
  • $$n(A - B) = n(B) - $$$$\displaystyle n\left ( A\cap B \right )$$
U is a universal set and n(U) =A, B and C are subset of U. If n(A) = 50, n(B) = 70, $$\displaystyle n\left ( B\cup C \right )=\Phi $$, $$\displaystyle n\left ( B\cap  C \right )=15 $$ and $$\displaystyle A\cup B\cup C=U $$. then n(C) equals
  • 40
  • 50
  • 55
  • 60
If $$n (A) = 115, n(B) = 326, n(A - B) = 47$$, then $$\displaystyle n(A+B)$$ is equal to 
  • 373
  • 165
  • 370
  • None
If A and B are two disjoint sets and N is the universal set then $$\displaystyle A^{c}\cup \left [ \left ( A\cup B \right )\cap B^{c} \right ]$$ is
  • $$\displaystyle \phi $$
  • A
  • B
  • N
Suppose $$\displaystyle A_{1},A_{2},....,A_{30}$$ are thirty sets each having 5 elements and $$\displaystyle B_{1},B_{2},....,B_{n}$$ are n sets each with 3 elements. Let $$\displaystyle \bigcup_{i=1}^{30}A_{i} = \bigcup_{j=1}^{n}B_{j}=S $$ and each elements of S belongs to exactly 10 of the $$\displaystyle A_{i}$$ and exactly 9 of the $$\displaystyle B_{j}$$. Then n is equal to-
  • 35
  • 45
  • 55
  • 65
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers