Explanation
x = 2 \cos t + 2t \sin t \cfrac { dx }{ dt } =2t\cos t+2\sin t-2\sin t=2t\cos t y = 2 \sin t - 2t \cos t \cfrac { dy }{ dt } =2\cos t+2t\sin t-2\cos t=2t\sin t \cfrac { dy }{ dx } =\cfrac { 2t\sin t }{ 2t\cos t } (t=\dfrac{\pi }4) \cfrac { dy }{ dx } =1 \cfrac { dx }{ dy } =-1 for slope of normal. x\left( \cfrac { \pi }{ 4 } \right) =2\cos \left( \cfrac { \pi }{ 4 } \right) +2.\cfrac { \pi }{ 4 } \sin \left( \cfrac { \pi }{ 4 } \right) =\sqrt { 2 } \left( 1+\cfrac { \pi }{ 4 } \right) y\left( \cfrac { \pi }{ 4 } \right) =2\sin \left( \cfrac { \pi }{ 4 } \right) -2.\cfrac { \pi }{ 4 } \cos \left( \cfrac { \pi }{ 4 } \right) =\sqrt { 2 } \left( 1-\cfrac { \pi }{ 4 } \right) Equation of normal with given point x+y-2\sqrt { 2 } =0 d=\cfrac { (2\sqrt { 2) } }{ \sqrt { 2 } } =2
Please disable the adBlock and continue. Thank you.