Explanation
x=2cost+2tsint dxdt=2tcost+2sint−2sint=2tcost y=2sint−2tcost dydt=2cost+2tsint−2cost=2tsint dydx=2tsint2tcost(t=π4) dydx=1 dxdy=−1 for slope of normal. x(π4)=2cos(π4)+2.π4sin(π4)=√2(1+π4) y(π4)=2sin(π4)−2.π4cos(π4)=√2(1−π4) Equation of normal with given point x+y−2√2=0 d=(2√2)√2=2
Please disable the adBlock and continue. Thank you.