CBSE Questions for Class 11 Commerce Applied Mathematics Tangents And Its Equations Quiz 10 - MCQExams.com

If tangent at any point on the curve $${ y }^{ 2 }=1+{ x }^{ 2 }\ makes\ an\ angle\ \theta $$ with positive direction of the x-axis then
  • $$\left| \tan { \theta } \right| >1$$
  • $$\left| \tan { \theta } \right| <1$$
  • $$\left| \tan { \theta } \right| \ge1$$
  • $$\left| \tan { \theta } \right| \le 1$$
The equation of the normal to the curve $$y=(1+x)^{ y }+\sin { ^{ -1 }(\sin ^{ 2 }{ x)\ at\ x=0\ is }  } $$.
  • $$x+y=1$$
  • $$x-y+1=0$$
  • $$x+y=2$$
  • $$2x-y+1=0$$
If the line $$ax+y=c$$, touches both the curves $${x}^{2}+{y}^{2}=1$$ and $${y}^{2}=4\sqrt{2}x$$, then $$\left| c \right| $$ is equal to:
  • $$1/2$$
  • $$2$$
  • $$\sqrt{2}$$
  • $$\cfrac { 1 }{ \sqrt { 2 } } $$
The equation of the normal to the curve$$y=\left( 1+x \right) ^{ y }+{ sin }^{ -1 }\left( { sin }^{ 2 }x \right) at\quad x=0$$ is
  • x+y=1
  • x-y+1=0
  • 2x+y=2
  • 2x-y+1
The sum of the length of sub tangent of sub tangent and tangent to the curve
$$x=c\left[ 2cos\theta -log\left( cos\quad ec\theta +cot\theta  \right)  \right] ,y=csin2\theta \quad at\quad \theta =\frac { \pi  }{ 3 } is$$
  • $$\dfrac { c }{ 2 } $$
  • $$2c$$
  • $$\dfrac { 3c }{ 2 } $$
  • $$\dfrac { 5c }{ 2 } $$
If the tangent to the curve $$x=at^2, y=2at$$ is perpendicular to $$x$$-axis, then its point of contact is
  • $$(a, a)$$
  • $$(0, a)$$
  • $$(0, 0)$$
  • $$(a, 0)$$
The slope of the tangent to the curve $$x=t^2+3t-8, y=2t^2-2t-5$$ at point $$(2, -1)$$ is
  • $$\dfrac {22}{7}$$
  • $$\dfrac {6}{7}$$
  • $$-6$$
  • $$\dfrac {7}{6}$$
The equation of tangent at those points where the curve $$y=x^2-3x+2$$ meets $$x$$-axis are
  • $$x-y+2=0,x-y-1=0$$
  • $$x+y-1=0,x-y-2=0$$
  • $$x-y-1=0,x-y=0$$
  • $$x-y=0,x+y=0$$
The equation of the normal to the curve $$y=x+\sin x\cos x$$ at $$x=\dfrac {\pi}{2}$$ is
  • $$x=2$$
  • $$x=\pi$$
  • $$x+\pi =0$$
  • $$2x=\pi$$
The point on the curve $$y=12x-x^2$$, where the slope of the tangent is zero will be
  • $$(0, 0)$$
  • $$(2, 16)$$
  • $$(3, 9)$$
  • $$(6, 36)$$
The slope of the tangent to the curve $$x=3t^2+1, y=t^3-1$$ at $$x=1$$ is
  • $$\dfrac {1}{2}$$
  • $$0$$
  • $$-2$$
  • $$\infty$$
The point on the curve $$y=x^2-3x+2$$ where tangent is perpendicular to $$y=x$$ is
  • $$(0, 2)$$
  • $$(1, 0)$$
  • $$(-1, 6)$$
  • $$(2, -2)$$
The equation of the normal to the curve $$y=x(2-x)$$ at the point $$(2, 0)$$ is
  • $$x-2y=2$$
  • $$x-2y+2=0$$
  • $$2x+y=4$$
  • $$2x+y-4=0$$
At what points the slope of the tangent to the curve $$x^2+y^2-2x-3=0$$ is zero?
  • $$(3, 0), (-1, 0)$$
  • $$(3, 0), (1, 2)$$
  • $$(-1, 0), (1, 2)$$
  • $$(1, 2), (1, -2)$$
Any tangent to the curve $$y=2x^7+3x+5$$
  • Is parallel to $$x$$-axis
  • Is parallel to $$y$$-axis
  • Makes an acute angle with $$x$$-axis
  • Makes an obtuse angle with $$x$$-axis
The normal to the curve $$x^2=4y$$ passing through $$(1, 2)$$ is
  • $$x+y=3$$
  • $$x-y=3$$
  • $$x+y=1$$
  • $$x-y=1$$
The equation of the normal to the curve $$x=a\cos^3\theta, y=a\sin^3\theta$$ at the point $$\theta =\dfrac {\pi}{4}$$ is
  • $$x=0$$
  • $$y=0$$
  • $$x=y$$
  • $$x+y=a$$
The number of tangents to the cure $$x^{3/2}+y^{3/2}=2a^{3/2}, a> 0$$, which are equally inclined to the axes, is 
  • 2
  • 1
  • 0
  • 4
The curve given by $$x + y = e^{xy}$$ has a tangent parallel to the y-axis at the point
  • $$(0,1)$$
  • $$( 1, 0 )$$
  • $$(1, 1)$$
  • None of these
Mark the correct alternative of the following.
The point on the curve $$9y^2=x^3$$, where the normal to the curve makes equal intercepts with the axes is?
  • $$(4, \pm 8/3)$$
  • $$(-4, 8/3)$$
  • $$(-4, -8/3)$$
  • $$(8/3, 4)$$
Mark the correct alternative of the following.
The line $$y=mx+1$$ is a tangent to the curve $$y^2=4x$$, if the value of m is?
  • $$1$$
  • $$2$$
  • $$3$$
  • $$1/2$$
The slope of the tangent to the curve $$x=t^2+3t-8, y=2t^2-2t-5$$ at the point $$(2, -1)$$ is
  • $$\dfrac {22}{7}$$
  • $$\dfrac {6}{7}$$
  • $$\dfrac {7}{6}$$
  • $$-\dfrac {6}{7}$$
The normal at the point $$(1, 1)$$ on the curve $$2y+x^2=3$$ is
  • $$x+y=0$$
  • $$x-y=0$$
  • $$x+y+1=0$$
  • $$x-y=1$$
Consider the equation $$x^y=e^{x-y}$$
What is $$\dfrac{d^2y}{dx^2}$$ at $$x=1$$ equal to ?
  • $$0$$
  • $$1$$
  • $$2$$
  • $$4$$
Consider the equation $$x^y=e^{x-y}$$
What is $$\dfrac{dy}{dx}$$ at $$x=1$$ equal to ?
  • $$0$$
  • $$1$$
  • $$2$$
  • $$4$$
A curve $$y=me^{mx}$$ where $$m > 0$$ intersects y-axis at a point $$P$$.
How much angle does the tangent at $$P$$ make with y-axis ? 
  • $$\tan^{-1}m^2$$
  • $$\cot^{-1}(a+m^2)$$
  • $$\sin^{-1}(\dfrac{1}{\sqrt{1+m^4}})$$
  • $$\sec^{-1}\sqrt{1+m^4}$$
A curve $$y=me^{mx}$$ where $$m > 0$$ intersects y-axis at a point $$P$$.
What is the slope of the curve at the point of intersection $$P$$ ? 
  • $$m$$
  • $$m^2$$
  • $$2m$$
  • $$2m^2$$
For $$x > 1, y=\log_e x$$ satisfies the inequality 
  • $$x-1 > y$$
  • $$x^2 -1 >y$$
  • $$y > x-1$$
  • $$\dfrac {x-1}{x} < y$$
The slope of the tangent to the curve $$y = \sqrt{4-x^{2}}$$ at the point, where the ordinate and the abscissa are equal , is
  • -1
  • 1
  • 0
  • None of these
If m is the slope of a tangent to the curve $$e^{y}=1+x^{2},$$ then 
  • $$\left | m \right |> 1$$
  • $$m> 1$$
  • $$m> -1$$
  • $$\left | m \right |\leq 1$$
The abscissa of points P and Q in the curve $$y = e^{x}+e^{-x}$$ such that tangents at P and Q make $$60^{o}$$ with the x-axis
  • ln $$\left ( \dfrac{\sqrt{3}+\sqrt{7}}{7} \right )$$ and ln $$\left ( \dfrac{\sqrt{3}+\sqrt{5}}{2} \right )$$
  • ln $$\left ( \dfrac{\sqrt{3}+\sqrt{7}}{2} \right )$$
  • ln $$\left ( \dfrac{\sqrt{7}+\sqrt{3}}{2} \right )$$
  • $$\pm$$ ln $$\left ( \dfrac{\sqrt{3}+\sqrt{7}}{2} \right )$$
If x=4 y = 14 is a normal to the curve $$y^{2}=ax^{3}-\beta $$ at (2,3) then the value of $$\alpha +\beta $$ is 
  • 9
  • -5
  • 7
  • -7
At what points of curve $$y = \dfrac{2}{3}x^{3}+\dfrac{1}{2}x^{2}$$, the tangent makes the equal with the axis?
  • $$(\dfrac{1}{2},\dfrac{5}{24})$$ and $$\left ( -1,\dfrac{-1}{6} \right )$$
  • $$(\dfrac{1}{2},\dfrac{4}{9})$$ and $$ ( -1,0)$$
  • $$\left ( \dfrac{1}{3},\dfrac{1}{7} \right )$$ and$$ \left ( -3, \dfrac{1}{2} \right )$$
  • $$\left ( \dfrac{1}{3},\dfrac{4}{47} \right )$$ and $$\left ( -1, \dfrac{1}{2} \right )$$
The curve represented parametrically by the equations x = 2 in $$\cot t+1$$ and $$y=\tan t+\cot t$$ 
  • tanfent and normal intersect at the point (2, 1)
  • normal at $$t = \pi /4$$ is parallel to the y-axis
  • tangent at $$t = \pi /4$$ is parallel to the line y = x
  • tangent at $$t = \pi /4$$ is parallel to the x-axis
If a variable tangent to the curve $$x^{2}y=c^{3}$$ makes intercepts a, b on x-and y-axes, respectively, then the value of $$a^{2}b$$ is
  • $$27c^{3}$$
  • $$\dfrac{4}{27}c^{3}$$
  • $$\dfrac{27}{4}c^{3}$$
  • $$\dfrac{4}{9}c^{3}$$
The angle between the tangent to the curves $$y = x^{2}$$ and $$x = y^{2}$$ at (1, 1) is 
  • $$\cos ^{-1}\dfrac{4}{5}$$
  • $$\sin ^{-1}\dfrac{3}{5}$$
  • $$\tan ^{-1}\dfrac{3}{4}$$
  • $$\tan ^{-1}\dfrac{1}{3}$$
At the point $$P(a, a^{n})$$ on the graph of $$y = x^{n}(n \epsilon  n)$$ in the first quadrant, a normal is drawn. the normal intersects the y-axis at the point (0, b) . if $$\underset{a\rightarrow b}{lim}b=\dfrac{1}{2}$$, then n equals
  • 1
  • 3
  • 2
  • 4
Point on the curve $$f(x)=\dfrac{x}{1-x^{2}}$$ where the tangent is inclined at an angle of $$\dfrac{\pi }{4}$$ ot the x-axis are 
  • (0, 0)
  • $$\left ( \sqrt{3},\dfrac{-\sqrt{3}}{2} \right )$$
  • $$\left ( -2 ,\dfrac{2}{3}\right )$$
  • $$\left (- \sqrt{3},\dfrac{\sqrt{3}}{2} \right )$$
The x-intercept of the tangent at any arbitrary point of the curve $$\dfrac{a}{x^{2}}+\dfrac{b}{y^{2}}=1$$ is proportion to
  • square of the abscissa of the point of tangency
  • square root of the abscissa of the point of tangency
  • cube of the abscissa pf the point of tangency
  • cube root of the abscissa of the point of tangency
If the tangent at any point $$P(4m^{2}, 8m^{3})$$ of $$x^{3}-y^{3}=0$$ is also a normal to the curve  $$x^{3}-y^{3}=0$$ , then value of m is
  • $$m = \dfrac{\sqrt{2}}{3}$$
  • $$m = -\dfrac{\sqrt{2}}{3}$$
  • $$m = \dfrac{3}{\sqrt{2}}$$
  • $$m = -\dfrac{3}{\sqrt{2}}$$
The slope of the tangent to the curve $$y = f(x)$$ at $$\left [ x, f(x) \right ]$$ is 2x +If the curve passes through the point (1, 2)then the area bounded by the curve, the x-axis and the line x = 1 is
  • $$\dfrac{5}{6}$$
  • $$\dfrac{6}{5}$$
  • $$\dfrac{1}{6}$$
  • 6
The normal to the curve $$x = a (\cos 0 + 0\sin 0), y= a (\sin 0- 0\cos 0)$$ at any point 0 is such that
  • it makes a constant angle with x-axis
  • it passes through the origin
  • it is at a constant distance from the origin
  • none of these
A curve passes through $$(2,1)$$ and is such that the square of the ordinate is twice the contained by the abscissa and the intercept of the normal. Then the equation of curve is
  • $$x^2 +y^2=9x$$
  • $$4x^2 +y^2=9x$$
  • $$4x^2 +2y^2=9x$$
  • None of these
The curve for which the ratio of the length of the segment by any tangent on the $$Y-$$axis to the length of the radius vector is constant $$(K)$$, is
  • $$(y+\sqrt {x^2 -y^2})x^{k-1}=c$$
  • $$(y+\sqrt {x^2 +y^2})x^{k-1}=c$$
  • $$(y-\sqrt {x^2 -y^2})x^{k-1}=c$$
  • $$(y+\sqrt {x^2 +y^2})x^{k-1}=c$$
If $$ f(x) = \displaystyle \int_{1}^{x} e^{t^2/2}(1-t^2)dt, $$ then $$\dfrac{d}{dx} f(x) $$ at x=1 is 
  • $$0$$
  • $$1$$
  • $$2$$
  • $$-1$$
If $$y=\displaystyle \int_{x}^{x^2}t^2dt ,$$ then the equation of tangent at x=1 is 
  • $$x+y=1$$
  • $$y=x-1$$
  • $$y=x$$
  • $$y=x+1$$
The tangent to the curve $$y = e^{x}$$ drawn at the point $$(c, e^{c})$$ intersects the line joining the points $$(c-1, e^{c-1})$$ and $$(c+1, e^{c+1})$$
  • on the left of x =c
  • on the right of x = c
  • at no point
  • at all point
If the line ax +by + c = 0 is a normal to the curve xy = 1, then 
  • $$a > 0, b> 0$$
  • $$a > 0, b < 0$$
  • $$a < 0, b > 0$$
  • $$a < 0, b < 0$$
The equation of the curves through the point $$(1,0)$$ and whose slope is $$ \dfrac{y -1}{x^{2} + x} $$ is
  • $$ (y - 1)(x + 1) + 2x = 0 $$
  • $$ 2x(y - 1) + x + 1 = 0 $$
  • $$ x(y - 1)(x + 1) + 2 = 0 $$
  • None of these
The point(s) on the curve $$y^{3} + 3x^{2} = 12y,$$ where the tangent is vertical, is (are)
  • $$\left ( \pm \dfrac{4}{\sqrt{3}}, -2 \right )$$
  • $$\left ( \pm \sqrt{\dfrac{11}{3}}, 1 \right )$$
  • (0, 0)
  • $$\left ( \pm \dfrac{4}{\sqrt{3}}, 2 \right )$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers