CBSE Questions for Class 11 Commerce Applied Mathematics Tangents And Its Equations Quiz 12 - MCQExams.com

Equation of the line through the point $$\left(\dfrac{1}{2}, 2 \right)$$ and tangent to the parabola $$\displaystyle y = \frac {-x^2}{2}+2$$ and secant to the curve $$\displaystyle y = \sqrt {4 - x^2}$$ is :
  • $$2x + 2y - 5 = 0$$
  • $$2x + 2y - 3 = 0$$
  • $$y - 2 = 0$$
  • $$none$$
What is the minimum intercept made by the axes on the tangent to the ellipse $$ \displaystyle \frac{x^2}{a^2} + \frac{y^2}{b^2}=1$$ ?
  • $$a+b$$
  • $$2(a+b)$$
  • $$\sqrt{ab}$$
  • none of these
Let $$C$$ be the curve $$\displaystyle y = x^3$$ (where $$x$$ takes all real values.) The tangent at $$A$$ meets the curve again at $$B$$. If the gradient of the curve at $$B$$ is $$K$$ times the gradient at $$A$$ then $$K$$ is equal to
  • $$4$$
  • $$2$$
  • $$-2$$
  • $$\dfrac{1}{4}$$
The graphs $$y=2x^3-4x+2$$ and $$y=x^3+2x-1$$ intersect at exactly 3 distinct points. The slope of the line passing through two of these points
  • is equal to 4
  • is equal to 6
  • is equal to 8
  • is not unique
Consider the curve represented parametrically by the equation
$$\displaystyle x = t^3 - 4t^2 - 3t$$ and $$\displaystyle y = 2t^2 + 3t - 5$$ where $$\displaystyle t \: \epsilon \: R$$.
If $$H$$ denotes the number of point on the curve where the tangent is horizontal and $$V$$ the number of point where the tangent is vertical then
  • $$H = 2$$ and $$V = 1$$
  • $$H = 1$$ and $$V = 2$$
  • $$H = 2$$ and $$V = 2$$
  • $$H = 1$$ and $$V = 1$$
The number of points on the curve $$x^{3/2}+y^{3/2}=a^{3/2}$$, where the tangents are equally inclined to the axes, is
  • $$2$$
  • $$1$$
  • $$0$$
  • $$4$$
Let $$\displaystyle f(x) = ln \: mx (m > 0)$$ and $$g(x) = px$$. Then the equation $$\displaystyle |f(x)| = g(x)$$ has only one solution for
  • $$\displaystyle 0 < p < \frac {m}{e}$$
  • $$\displaystyle p < \frac {e}{m}$$
  • $$\displaystyle 0 < p < \frac {e}{m}$$
  • $$\displaystyle p > \frac {m}{e}$$
The equation of the normal to the curve $$\displaystyle (\frac {x}{a})^n + (\frac {y}{b})^n = 2 (n \epsilon N)$$ at the point with abscissa equal to 'a' can be:
  • $$\displaystyle ax + by = a^2 - b^2$$
  • $$\displaystyle ax + by = a^2 + b^2$$
  • $$\displaystyle ax - by = a^2 - b^2$$
  • $$\displaystyle dx - ay = a^2 - b^2$$
The co-ordinates of the point P on the graph of the function $$\displaystyle y = e^{-|x|}$$ where the portion of the tangent intercepted between the co-ordinate axes has the greatest area, is
  • $$\displaystyle \left(1, \frac {1}{e}\right)$$
  • $$\displaystyle \left(-1, \frac {1}{e}\right)$$
  • $$\displaystyle (e, e^{-e})$$
  • none
A point $$\displaystyle P(a, a^n)$$ on the graph of $$\displaystyle y = x^n (n \: \epsilon \: N)$$ in the first quadrant a normal is drawn. The normal intersects the y-axis at the point $$(0, b)$$. If $$\displaystyle _{a \rightarrow 0}^{Lim \: b} \textrm{=} \frac {1}{2}$$, then n equals
  • $$1$$
  • $$3$$
  • $$2$$
  • $$4$$
The normal curve $$xy = 4$$ at the point $$(1, 4)$$ meets the curve again at
  • $$(-4, -1)$$
  • $$\displaystyle \left(-8, \frac {1}{2}\right)$$
  • $$\displaystyle \left(-16, -\frac {1}{4}\right)$$
  • $$(-1, -4)$$
If $$\displaystyle \frac {x}{a} + \frac {y}{b} = 1$$ is a tangent to the curve $$\displaystyle x = Kt, y = \frac {K}{t}, K > 0$$ then :
  • $$a > 0, b > 0$$
  • $$a > 0, b < 0$$
  • $$a < 0, b > o$$
  • $$a < 0, b < 0$$
For the curve represented parametrically by the equations, $$\displaystyle x = \displaystyle\frac{2}{cot\:t}  + 1$$ & $$\displaystyle y = tan \: t + cot \: t$$
  • tangent at $$\displaystyle t = \displaystyle\frac{\pi}{4}$$ is parallel to x - axis
  • normal at $$\displaystyle t =\displaystyle\frac{\pi}{4}$$ is parallel to y - axis
  • tangent at $$\displaystyle t =\displaystyle\frac{\pi}{4}$$ is parallel to the line $$y = x$$
  • tangent and normal intersect at the point $$(2, 1)$$
The straight line which is both a tangent and normal to the curve $$\displaystyle x = 3t^2, y = 2t^3$$ is
  • $$\displaystyle y + \sqrt 2 (x - 2) = 0$$
  • $$\displaystyle y - \sqrt 2 (x - 2) = 0$$
  • $$\displaystyle y + \sqrt 3 (x - 1) = 0$$
  • $$\displaystyle y - \sqrt 3 (x - 1) = 0$$
The tangent to the curve $$y={e}^{x}$$ drawn at the point $$\left(c,{e}^{c}\right)$$ intersects the line joining the points $$\left(c-1,{e}^{c-1}\right)$$ and $$\left(c+1,{e}^{c+1}\right)$$
  • on the left of $$x=c$$
  • on the right of $$x=c$$
  • at no point
  • at all points.
Find the equations of tangents to the curve y=x$$^{4}$$ which are drawn from the point $$(2,0)$$
  • Only $$\displaystyle y-\left ( \frac{8}{3} \right )^{4}=4\left ( \frac{8}{3} \right )^{3}\left ( x-\frac{8}{3} \right )$$
  • Only $$y=0$$
  • Both A and B
  • Only $$\displaystyle y-\left ( \frac{8}{3} \right )=4\left ( \frac{8}{3} \right )\left ( x-(\frac{8}{3})^{4} \right )$$
If the line $$ax+by+c=0$$ is a normal to the rectangular hyperbola $$xy=1$$ then
  • $$a>0, b>0$$
  • $$a>0, b<0$$
  • $$a<0, b>0$$
  • $$a<0, b<0$$
A figure is bounded by the curve $$\displaystyle y=x^{2}+1,$$ the axes of co-ordinates and the line x=Determine the co-ordinates of a point P at which a tangent be drawn to the curve so as to cut off a trapezium of greatest area from the figure.
  • $$\displaystyle \left ( \frac{1}{2}, \frac{5}{2} \right )$$
  • $$\displaystyle \left ( \frac{1}{2}, \frac{5}{4} \right ).$$
  • $$\displaystyle \left ( -\frac{1}{2}, \frac{5}{2} \right ).$$
  • $$\displaystyle \left ( \frac{1}{2}, -\frac{5}{4} \right ).$$
At which point the tangent to $$\displaystyle x^{3}= ay^{2}$$ at $$\displaystyle \left ( 4am^{2},8am^{3} \right )$$ cuts the curve again.
  • $$\displaystyle \left ( am^{4},-am^{2} \right ).$$
  • $$\displaystyle \left ( am^{3},-am^{2} \right ).$$
  • $$\displaystyle \left ( am^{2},-am^{3} \right ).$$
  • $$\displaystyle \left ( am^{1},-am^{3} \right ).$$
Which of tangents to the curve $$\displaystyle y= \cos \left ( x+y \right ), -2\pi \leq x\leq 2\pi $$ is/are parallel to the line $$x+2y=0$$.
  • $$\displaystyle 2x+4y+3\pi = 0$$
  • $$\displaystyle x+4y-\pi = 0.$$
  • $$\displaystyle 2x+4y-\pi = 0.$$
  • $$\displaystyle x-4y-3\pi = 0.$$
The point (s) on the curve $$\displaystyle y^{3}+3x^{2}= 12y,$$ where the tangent is vertical (i.e., parallel to the y-axis),  is / true
  • $$\displaystyle \left ( \pm \frac{4}{\sqrt{3}},-2 \right )$$
  • $$\displaystyle \left ( \pm \frac{\sqrt{11}}{3},1 \right )$$
  • $$\displaystyle \left ( 0, 0 \right )$$
  • $$\displaystyle \left ( \pm \frac{4}{\sqrt{3}},2 \right )$$
Let the equation of a curve be $$x=a\left ( \theta +\sin \theta  \right )$$, $$y=a\left ( 1-\cos \theta  \right )$$. If $$\theta $$ changes at a constant rate $$k$$ then the rate of change of slope of the tangent to the curve at $$\displaystyle \theta =\frac{\pi }{2}$$ is
  • $$\displaystyle \frac{2k}{\sqrt{3}}$$
  • $$\displaystyle \frac{k}{\sqrt{3}}$$
  • $$k$$
  • none of these
The positive value of $$k$$ for which $$ke^x-x=0$$ has only one real solution is 
  • $$\dfrac{1}{e}$$
  • 1
  • e
  • $$\log_{e}2$$
Find the co-ordinates of the point (s) on the curve $$\displaystyle y= \frac{x^{2}-1}{x^{2}+1}, x> 0$$ such that tangent at these point (s)have the greatest slope.
  • $$\displaystyle \left ( \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{2}} \right ).$$
  • $$\displaystyle \left ( \frac{1}{\sqrt{3}},-\frac{1}{{2}} \right ).$$
  • $$\displaystyle \left ( \frac{1}{{3}},-\frac{4}{{5}} \right ).$$
  • $$\displaystyle \left ( {\sqrt{3}},\frac{1}{{2}} \right ).$$
The normal to the curve given by $$\displaystyle x= a\left ( \cos \theta +\theta \sin \theta  \right ), y= a\left ( \sin \theta -\theta \cos \theta  \right )$$ at any point $$\displaystyle \theta $$ is such that it
  • makes a constant angle with x-axis
  • is at a constant distance from the origin
  • touches a fixed circle
  • passes through the origin
The point of intersection of the tangents drawn to the curve $$\displaystyle x^{2}y= 1-y$$ at the point where it is intersected by the curve xy$$=1-y,$$ is given by
  • $$(0, 1)$$
  • $$(1, 1)$$
  • $$(0, -1)$$
  • none of these
If the sum of the squares of the intercepts on the axes cut off by the tangent to the cuve $$\displaystyle x^{1/3}+y^{1/3}= a^{1/3}\left ( a> 0 \right )$$ at $$\displaystyle \left ( \dfrac{a}{8}, \dfrac{a}{8} \right )$$ is $$2$$, then $$a$$ has the value
  • $$1$$
  • $$2$$
  • $$4$$
  • $$8$$
The point(s) on the curve $$y^{3}+3x^{2}=12y$$ the tangent is vertical is (are)
  • $$\left ( \pm 4/\sqrt{3}\: -2 \right )$$
  • $$\left ( \pm \sqrt{11/3},1 \right )$$
  • $$\left ( 0,0 \right )$$
  • $$\left ( \pm 4/\sqrt{3}\: ,2 \right )$$
The families of curves defined by the equations $$\displaystyle y= ax, y^{2}+x^{2}= c^{2}$$ are perpendicular for
  • a$$= 2,$$ c$$= 4$$
  • a$$= -2,$$ c$$= 3$$
  • a$$= 3,$$ c$$= 2$$
  • a$$= 3,$$ c$$= -2$$
The coordinates of the point $$P$$ on the curve $$y^{2}= 2x^{3}$$ the tangent at which is perpendicular to the line $$4x-3y + 2 = 0$$, are given by
  • $$\left ( 2,4 \right )$$
  • $$\left ( 1,\sqrt{2} \right )$$
  • $$\left ( 1/2,-1/2 \right )$$
  • $$\left ( 1/8,-1/16 \right )$$
The tangent to the curve $$x= a\sqrt{\cos 2\theta }\cos \theta $$, $$y= a\sqrt{\cos 2\theta }\sin \theta
$$ at the point corresponding to $$\theta = \pi /6$$ is
  • parallel to the $$x$$-axis
  • parallel to the $$y$$-axis
  • parallel to line $$y = x$$
  • none of these
The equation of the tangent line at an inflection point of $$\displaystyle f\left ( x \right )=x^{4}-6x^{3}+12x^{2}-8x+3$$ is
  • y$$= 3x+4$$
  • y$$= 4$$
  • y$$= 3x+2$$
  • none of these
The equation of the common tangent to the curves $$\displaystyle y^{2}= 8x$$ and $$ \displaystyle xy= -1$$ is
  • $$3y =9x\:+\:2$$
  • $$y =2x\:+\:1$$
  • $$2y = x\:+ \:8$$
  • $$y = x\:+\:2$$
The equation of the tangents to $$\displaystyle 4x^{2}-9y^{2}=36$$ which are perpendicular to the straight line $$\displaystyle 2y+5x= 10$$ are
  • $$\displaystyle 5\left ( y-3 \right )=2 \left ( x-\sqrt{\frac{117}{4}} \right )$$
  • $$\displaystyle 5\left ( y-2 \right )=2 \left ( x-\sqrt{-18} \right )$$
  • $$\displaystyle 5\left ( y+2 \right )=2 \left ( x-\sqrt{-18} \right )$$
  • none of these
Of all the line tangent to the graph of the curve  $$\displaystyle y=\frac{6}{x^{2}+3},$$ find the equations of the tangent lines of minimum and maximum slope respectively.
  • $$3x + 4y - 9 = 0; 3x - 4y + 9 =0$$
  • $$3x + 4y + 9 = 0; 3x - 4y + 9 =0$$
  • $$4x + 3y - 9 = 0; 4x - 3y - 9 =0$$
  • $$4x - 3y - 9 = 0; 4x + 3y - 9 =0$$
The equations of the tangents to the curve $$y=x^{4}$$ from the point $$(2, 0)$$ not on the curve, are given by
  • $$y = 0$$
  • $$y - 1 = 5(x -1)$$
  • $$\displaystyle y-\frac{4098}{81}=\frac{2048}{27}\left ( x-\frac{8}{3} \right )$$
  • $$\displaystyle y-\frac{32}{243}=\frac{80}{81}\left ( x-\frac{2}{3} \right )$$
For the curve $${x}^{2}+4xy+8{y}^{2}=64$$ the tangents are parallel to the $$x$$-axis only at the points
  • $$(0,2\sqrt { 2 } )$$ and $$(0,-2\sqrt { 2 } )$$
  • $$(8,-4)$$ and $$(-8,4)$$
  • $$(8\sqrt { 2 } ,-2\sqrt { 2 } )$$ and $$(-8\sqrt { 2 } ,2\sqrt { 2 } )$$
  • $$(9,0)$$ and $$(-8,0)$$
If $$y = 4x - 5$$ is a tangent to the curve $$y^{2} = px^{3} + q$$ at $$(2, 3)$$, then
  • $$p = 2, q = -7$$
  • $$p = -2, q = 7$$
  • $$p = -2, q = -7$$
  • $$p = 2, q = 7$$
Find the point of intersections of the tangets drawn to the curve $$\displaystyle x^{2}y=1-y$$ at the points where it is intersected by the curve $$xy = 1 - y$$
  • $$(1, 0)$$
  • $$(0, 1)$$
  • $$(\dfrac{2}{3},\dfrac{1}{3})$$
  • $$(\dfrac{1}{3},\dfrac{2}{3})$$
If the tangent is drawn to the curve y = f(x) at a point where it crosses the y - axis then its equation is
  • $$x - 4y = 2$$
  • $$x + 4y = 2$$
  • $$x + 4y +2 = 0$$
  • none of these
If the line $$ax + by + c = 0$$ is a normal to the curve $$xy = 1$$. Then
  • $$a> 0, b> 0$$
  • $$a> 0, b < 0$$
  • $$a < 0, b > 0$$
  • $$a < 0, b < 0$$
The coordinates of the points(s) at which the tangents to the curve $$\displaystyle y=x^{3}-3x^{2}-7x+6$$ cut the positive semi axis OX a line segment half that on the negative semi axis OY is/are given by
  • $$(-1, 9)$$
  • $$(3, -15)$$
  • $$(1, -3)$$
  • none
What normal to the curve $$\displaystyle y=x^{2}$$ form the shortest chord?
  • $$\displaystyle x+\sqrt{2}y=\sqrt{2}$$ or $$\displaystyle x-\sqrt{2}y=-\sqrt{2}$$
  • $$\displaystyle x+\sqrt{2}y=\sqrt{2}$$ or $$\displaystyle x-\sqrt{2}y=\sqrt{2}$$
  • $$\displaystyle x+\sqrt{2}y=-\sqrt{2}$$ or $$\displaystyle x-\sqrt{2}y=-\sqrt{2}$$
  • $$\displaystyle x+\sqrt{2}y=-\sqrt{2}$$ or $$\displaystyle x-\sqrt{2}y=\sqrt{2}$$
The tangent to the curve $$y=e^{x}$$ drawn at the point $$\left ( c,e^{c} \right )$$ intersects the line joining the points $$(c -1,e^{c-1})$$ and $$(c +1,e^{c+1}) $$
  • on the left of $$x = c$$
  • on the right of $$x = c$$
  • at no paint
  • at all points
The curve $$y-{e}^{xy}+x=0$$ has a vertical tangent at the point
  • $$(1,1)$$
  • At no point
  • $$(0,1)$$
  • $$(1,0)$$
The equation of the normal to the curve $$y(1+{x}^{2})=2-x$$ where the tangent crosses $$x$$-axis is 
  • $$5x-y-10=0$$
  • $$x-5y-10=0$$
  • $$5x+y+10=0$$
  • $$x+5y+10=0$$
The curve given by $$x+y={ e }^{ xy }$$ has a tangent parallel to the y-axis at the point
  • $$(0,1)$$
  • $$(1,0)$$
  • $$(1,1)$$
  • $$(-1,-1)$$
Abscissa of $$p_{1}, p_{2}, p_{3} .... p_{n}$$ are in
  • A.P.
  • G.P.
  • H.P
  • None
If the slope of the curve $$y=\cfrac { ax }{ b-x } $$ at the point $$(1,1)$$ is $$2$$, then the values of $$a$$ and $$b$$ are respectively
  • $$1,-2$$
  • $$-1,2$$
  • $$1,2$$
  • None of these
The curve that passes through the point $$(2,3)$$ and has the property that the segment of any tangent to it lying between the coordinate axes is bisected by the point of contact, is given by
  • $${ \left( \cfrac { x }{ 2 } \right) }^{ 2 }+{ \left( \cfrac { y }{ 3 } \right) }^{ 2 }=2\quad $$
  • $$2y-3x=0$$
  • $$y=\cfrac { 6 }{ x } $$
  • $${ x }^{ 2 }+{ y }^{ 2 }=13$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers