Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

CBSE Questions for Class 11 Commerce Applied Mathematics Tangents And Its Equations Quiz 13 - MCQExams.com

For the curve x=t21, y=t2t, the tangent is perpendicular to x-axis then
  • t=0
  • t=12
  • t=1
  • t=13
If the tangent at any point on the curve x4+y4=a4 cuts off intercepts p and q on the coordinate axes the value of p4/3+q4/3 is
  • a4/3
  • a1/3
  • a1/2
  • None of these
The slope of the tangent to the curve at a point (x,y) on it is proportional to (x2). If the slope of the tangent to the curve at (10,9)  on it is 3. The equation of the curves is .
  • y=k(x2)2
  • y=316(x2)2+1
  • y=316(x2)2+3
  • y=K(x+2)2
If the line y=4x5 touches to the curve y2=ax3+b at the point (2,3) then 7a+2b=
  • 0
  • 1
  • 1
  • 2
f(x)={x2,for x<0x2+8,for x0
Let . Then x-intercept of the line, thet is , the tangent to the graph of f(x) is 
  • zero
  • -1
  • -2
  • -4
If the tangent at any point on the curve x+y4=a cuts off intercepts p and q on the co-ordinate axes, the value of p4/3+q4/3 is 
  • a4/3
  • a1/2
  • a1/3
  • None of these
If the tangent at (x1,y1) to the curve x3+y3=a3 meets the curve again at (x2,y2), then
  • x2x1+y2y1=1
  • x2y1+x1y2=1
  • x1x2+y1y2=1
  • x2x1+y2y1=1
A point on the curve y=2x3+13x2+5x+9, the tangent at which passes through the origin is 
  • (1,15)
  • (1,15)
  • (15,1)
  • (1,15)
The point on the curve y=bexa at which the tangent drawn is xa+yb=1 is
  • (0,b)
  • (a,1e)
  • (0,1)
  • (1,0)
The slope of the tangent to the curve r2=a2cos2θ, where x=rcosθ,y=rsinθ, at the point θ=π6 is
  • 12
  • 1
  • 1
  • 0
The line xa+yb=1 touches the curve y=bex/a at the point.
  • (a,b/a)
  • (a,b/a)
  • (0,b)
  • None of these

The abscissa of the point on the curve xy=a+x , the tangent at which cuts off equal intercepts from the co-ordinate axes is (a >0)

  • a2
  • a2
  • a2
  • - a2
if m is the slope of a tangent to the curve ey=1+x2, then  m belongs to the interval
  • [1,1]
  • [2,1]
  • [1,2]
  • [1,3]
Find the slope of tangent of the curvex=asin3t,y=bcos3t at t=π2
  • cott
  • tant
  • cott
  • not defined  at π2
The slope of the curve y=sinx+cos2x is zero at a point , whose x-coordinate can be ?
  • π4
  • π2
  • π
  • π3
A tangent drawn to the curve y=f(x) at P(x,y)
cuts the x and y axes at A and B, respectively, such that AP:PB=1:3. If f(1)=1 then the curve passes through (k,18) where k is
  • 1
  • 2
  • 3
  • 4
Equation of tangent to the circle x2+y26x+4y12=0 which are parallel to the line 4x+3y+5=0 is ?
  • 4x+3y+19=0
  • 4x+3y+31=0
  • 4x+3y19=0
  • 4x+3y+29=0
Let f ( x ) = \frac { 1 } { 1 + x ^ { 2 } }. Let m be the slope, 'a' be the x-intercept and 'b' be the y-intercept of tangent to y = f ( x ).Abscissa of point of contact of the tangent for which 'm' is greatest is:
  • \frac { 1 } { \sqrt { 3 } }
  • 1
  • 0
  • \frac { - 1 } { \sqrt { 3 } }
If V is the set of points on the curve y^{3} - 3xy +2 = 0 where the tangent is vertical then V =.
  • \phi
  • \left \{(1 , 0)\right \}
  • \left \{(1, 1)\right \}
  • \left \{(0, 0), (1, 1)\right \}
Paraboals (y-\alpha )^{2}=4a(x-\beta )and (y-\alpha )^{2}=4a'(x-\beta ') will have a common normal (other than the normal passing through vertex ofparabola)if:
  • \frac{2(a-a')}{\beta '-\beta }< 1
  • \frac{2(a-a')}{\beta -\beta' }< 1
  • \frac{2(a'-a)}{\beta -\beta' }< 1
  • \frac{2(a'a)}{\beta -\beta' }> 1
The normal to the curve x=a\left( \cos { \theta  } +\theta \sin { \theta  }  \right) , y=a\left( \sin { \theta  } -\theta \cos { \theta  }  \right) at any point \theta is such that
  • it passes through origin
  • it passes through the point (1,1)
  • it passes through \left( \frac { a\pi }{ 2 } ,-a \right)
  • it is at a constant distance from the origin
The tangent to the circle x^2+y^2=5 at the point (1,-2)  also touches the circle x^2+y^2-8x+6y+20=0 at 
  • (-2,1)
  • (-3,0)
  • (-1,-1)
  • (3,-1)
If for a curve represented parametrically by x={ sec }^{ 2 }t,\quad y=cot\quad t\quad , the tangent  at a point P(t=\frac { \pi  }{ 4 } ) meets the curve again at the point Q, then \begin{vmatrix} PQ \end{vmatrix}is equal to 
  • \frac { 2\sqrt { 5 } }{ 3 }
  • \frac { 3\sqrt { 5 } }{ 2 }
  • \frac { 5\sqrt { 3 } }{ 3 }
  • \frac { 5\sqrt { 5 } }{ 4 }
If the subnormal to the curve { x }^{ 2 }.{ y }^{ n }={ a }^{ 2 } is a constant then n=
  • -4
  • -3
  • -2
  • -1
If \theta is angle of intersection between y=10-x^{2} and y=4+x^{2} then |\tan \theta| is-
  • \dfrac {5\sqrt {3}}{11}
  • \dfrac {7\sqrt {3}}{15}
  • \dfrac {4\sqrt {3}}{11}
  • none
The tangent to the curve y  =x^2 - 5x + 5, parallel to the line 2y = 4x + 1, also passes through the point
  • \lgroup \dfrac{1}{4}, \dfrac{7}{2} \rgroup
  • \lgroup \dfrac{7}{2}, \dfrac{1}{4} \rgroup
  • \lgroup -\dfrac{1}{8}, 7 \rgroup
  • \lgroup \dfrac{1}{8}, -7 \rgroup
y = 6\tan \,x\left( {{e^x} - x - 1} \right) - 3{x^3} - {x^4} - \frac{5}{4}{x^5},\, if {n^{th}} derivative at x=0 is non zero then least value of n is
  • 3
  • 4
  • 5
  • 6
The slope of the tangent to the curve at a point (x, y) on it is proportional to (x-2). If the slope of the tangent to the curve at  (10,-9) on it -The equation of the curve is
  • y=k{ \left( x-2 \right) }^{ 2 }
  • y=\frac { -3 }{ 16 } { \left( x-2 \right) }^{ 2 }\ +1
  • y=\frac { -3 }{ 16 } { \left( x-2 \right) }^{ 2 }\ +3
  • y=k{ \left( x+2 \right) }^{ 2 }
If the curves \dfrac {x^{2}}{a^{2}} + \dfrac {y^{2}}{4} = 1 and y^{3} = 16x intersect at right angles, then a^{2} is equal to
  • 5/3
  • 4/3
  • 6/11
  • 3/2
If the slope of one of the lines given by {a^2}{x^2} + 2hxy+by^2 = 0 be three times of the other , then h is equal to 
  • 2\sqrt 3 ab
  • -2\sqrt 3 ab
  • \frac{2}{{\sqrt 3 }}ab
  • -\frac{2}{{\sqrt 3 }}ab
The equation of normal to the curve y=log^x_e at the point P(1, 0) is ___________.
  • 2x+y=2
  • x-2y=1
  • x-y=1
  • x+y=1
If the tangent to the curve y=\cfrac { x }{ { x }^{ 2 }-3 } ,x\in R,\left( x\neq \pm \sqrt { 3 }  \right) , at a point \left( \alpha ,\beta  \right) \neq \left( 0,0 \right) on it is parallel to the line 2x+6y-11=0, then:
  • \left| 6\alpha +2\beta \right| =19\quad
  • \left| 2\alpha +6\beta \right| =11
  • \left| 6\alpha +2\beta \right| =9
  • \left| 2\alpha +6\beta \right| =19\quad
If the line joining the point (0, 3 ) and (5, -2) is a tangent to the curve y= \dfrac{c}{x+1}, then the value of c is 
  • 1
  • -2
  • 4
  • None of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers