Processing math: 0%

CBSE Questions for Class 11 Commerce Applied Mathematics Tangents And Its Equations Quiz 4 - MCQExams.com

The curve given by the equation yexy+x=0 has a vertical tangent at the point
  • (0,1)
  • (1,1)
  • (1,1)
  • (1,0)

The sum of the intercepts made on the axes of coordinates by any tangent to the curve \sqrt{x}+\sqrt{y}=2 is equal to

  • 4
  • 2
  • 8
  • None of these
If the parabola y = ax^2 - 6x + b passes through (0, 2) and has its tangent at x = \dfrac{3}{2} parallel to the x-axis then
  • a = 2, b = -2
  • a = 2, b = 2
  • a = - 2, b = 2
  • a = - 2, b = - 2
At what points of curve y= \displaystyle \frac {2}{3} x^3 + \displaystyle \frac{1}{2} x^2 , the tangent makes equal angle with the axis
  • \left( \displaystyle \frac { 1 }{ 2 } ,\displaystyle \frac { 5 }{ 24 } \right) and \left( -1,-\displaystyle \frac { 1 }{ 6 } \right)
  • \left(\displaystyle \frac { 1 }{ 2 } ,\displaystyle \frac { 4 }{ 9 } \right) and \left( -1,0 \right)
  • \left(\displaystyle \frac { 1 }{ 3 } ,\displaystyle \frac { 1 }{ 7 } \right) and \left( -3,\displaystyle \frac { 1 }{ 2 } \right)
  • \left(\displaystyle \frac { 1 }{ 3 } ,\displaystyle \frac { 4 }{ 47 } \right) and \left( -1,-\displaystyle \frac { 1 }{ 3 } \right)
The point on the curve  3y=6x-5x^3 , the normal at which passes through the origin is
  • \left( 1,\displaystyle \frac { 1 }{ 3 } \right)
  • \left( \displaystyle \frac { 1 }{ 3 } ,1 \right)
  • \left( 2,\displaystyle \frac { -28 }{ 3 } \right)
  • none of these
If at each point of the curve y=x^3-ax^2 +x+1, the tangent is inclined at an acute angle with the positive direction of the x-axis, then
  • a>0
  • a\leq \sqrt 3
  • -\sqrt 3 \leq a \leq \sqrt 3
  • none of these
Consider a curve y=f(x) in xy- plane. The curve passes through (0,0) and has the property that a segment of tangent drawn at any point P(x, f(x)) and the line y=3 gets bisected by the line x+y=1, then the equation of the curve is 
  • y^2=9(x-y)
  • (y-3)^2=9(1-x-y)
  • (y+3)^2=9(1-x-y)
  • (y-3)^2-9(1+x+y)
The value of 'c' such that the line joining (0,3),(5,-2) is a tangent to the curve y=\dfrac{c}{x+1}
  • 4
  • 3
  • 23
  • 1
The equation of the tangent to the curve y=be^{-x/a} at the point where it crosses the y-axis is
  • \displaystyle \frac {x}{a}-\displaystyle \frac{y}{b} =1
  • ax+by=1
  • ax-by=1
  • \displaystyle \frac {x}{a}+\displaystyle \frac{y}{b} =1
The distance between the origin and the tangent to the curve y = e^{2x} + x^{2} drawn at the point x = 0 is
  • \dfrac {1}{\sqrt 5}
  • \dfrac {2}{\sqrt 5}
  • \dfrac {-1}{\sqrt 5}
  • \dfrac {2}{\sqrt 3}
The slope of the tangent to the curve y= \sqrt {4-x^2} at the point where the ordinate and the abscissa are equal is
  • -1
  • 1
  • 0
  • none of these
The curve given by x+y=e^{xy} has a tangent parallel to the y-axis at the point
  • (0,1)
  • (1,0)
  • (1,1)
  • none of these
The normal to the curve 2x^2 +y^2=12  at the point (2,2) cuts the curve again at
  • \left (-\displaystyle \frac {22}{9}, -\displaystyle \frac {2}{9}\right )
  • \left (\displaystyle \frac {22}{9}, \displaystyle \frac {2}{9}\right )
  • (-2,-2)
  • none of these
If a variable tangent to the curve x^2y=c^3 makes intercepts a , b on X-axes and Y- axes, respectively, then the value of a^2b is
  • 27c^3
  • \displaystyle \frac {4}{27}c^3
  • \displaystyle \frac {27}{4}c^3
  • \displaystyle \frac {4}{9} c^3
If y = 4x - 5 is a tangent to the curve \displaystyle y^2 = px^3 + q at (2, 3), then
  • p = 2, q = -7
  • p = -2, q = 7
  • p = -2, q = -7
  • p = 2, q = 7
The point(s) at each of which the tangents to the curve \displaystyle y = x^3 - 3x^2 - 7x + 6 cut off on the positive semi axis OX a line segment half that on the negative semi axis OY, then the co-ordinates of the point(s) is/are give by:
  • (-1, 9)
  • (3, -15)
  • (1, -3)
  • none
If the tangent to the curve xy + ax + by = 0 at (1, 1) makes an angle \displaystyle \tan ^{-1}(2) with x-axis, then \displaystyle a + 2b is equal to
  • \displaystyle \frac {1}{2}
  • \displaystyle - \frac {1}{2}
  • 3
  • -3
A line L is perpendicular to the curve \displaystyle  y = \dfrac {x^2}{4} - 2 at its point P and passes through (10, -1). The coordinates of the point P are
  • (2, -1)
  • (6, 7)
  • (0, -2)
  • (4, 2)
If the curve y=ax^3+bx^2+cx is inclined at 45^0 to the x-axis at (0,0) but it touches the x-axis at (1,0) then the value of a,b and c are given by
  • a=-1,b=2,c=1
  • a=1,b=-2,c=1
  • a=1,b=1,c=-2
  • a=-2,b=1,c=1
If the tangent at each point of the curve \displaystyle y=\frac { 2 }{ 3 } { x }^{ 3 }-2a{ x }^{ 2 }+2x+5 makes an acute angle with the positive direction of x-axis, then 
  • a\ge 1
  • -1\le a\le 1
  • a\le -1
  • none of these
The angle formed by the positive y-axis and the tangent to y=x^2+4x-17 at (5/2,-3/4) is
  • {\tan^{-1}(9)}
  • \displaystyle \frac{\pi}{2}-{\tan^{-1}(9)}
  • \displaystyle \frac{\pi}{2}+{\tan^{-1}(9)}
  • none of these
The coordinates of the point(s) on the graph of the function f(x)=\displaystyle \frac {x^3}{3}-\displaystyle \frac{5x^2}{2}+7x-4, where the tangent drawn cuts off intercepts from the coordinate axes which are equal in magnitude but opposite in sign, are
  • (2,8/3)
  • (3,7/2)
  • (1,5/6)
  • none of these
If a variable tangent to the curve \displaystyle x^2y = c^3 makes intercepts a, b on x and y axis respectively, then the value of \displaystyle a^2b is
  • \displaystyle 27 c^3
  • \displaystyle \frac {4}{27} c^3
  • \displaystyle \frac {27}{4} c^3
  • \displaystyle \frac {4}{9} c^3
The line ax + by = 1 is tangent to the curve \displaystyle ax^2 + by^2 = 1, if (a, b) can be equal to
  • \displaystyle (\frac {1}{2}, \frac {1}{2})
  • \displaystyle (\frac {1}{4}, \frac {3}{4})
  • \displaystyle (\frac {1}{2}, \frac {3}{4})
  • \displaystyle (\frac {1}{4}, \frac {1}{2})
The slope of the tangent to the curve y=x^{2}-x at the point where the line y=2 cuts the curve in the first quadrant is
  • 2
  • 3
  • -3
  • none of these
The slope of the tangent to the locus y=\cos^{-1}\left ( \cos x \right ) at x=\displaystyle \frac{\pi }{4} is
  • 1
  • 0
  • 2
  • -1
The point of contact of a tangent from the point (1, 2) to the circle x^{2}+y^{2}=1 has the coordinates 
  • (1,0)
  • (-1,0)
  • \displaystyle (\frac{3}{5},-\frac{4}{5})
  • \displaystyle (-\frac{3}{5},\frac{4}{5})
Let \displaystyle f(x)=e\:^{x}\sin x be the equation of a curve. If at \displaystyle x=a,0\leq a\leq 2\pi, the slope of the tangent is the maximum then the value of a is 
  • \displaystyle \pi /2
  • \displaystyle 3\pi /2
  • \displaystyle \pi
  • \displaystyle \pi /4
If at each point of the curve y=x^{3}-ax^{2}+x+1 the tangent is inclined at an acute angle with the positive direction of the x-axis then
  • 4a>0
  • a\leq \sqrt{3}
  • -\sqrt{3}\leq a\leq \sqrt{3}
  • none of these
The slope of the tangent to the curve y=\sqrt{4-x^{2}} at the point where the ordinate and the abscissa are equal, is
  • -1
  • 1
  • 0
  • none of these
The equation of the curve is given by x=e^{t}\sin ty=e^{t}\cos t. The inclination of the tangent to the curve at the point t=\displaystyle \frac{\pi }{4} is
  • \displaystyle \frac{\pi }{4}
  • \displaystyle \frac{\pi }{3}
  • \displaystyle \frac{\pi }{2}
  • 0
The triangle by the tangent to the curve f(x) = x^{2} bx -b at the point (1, 1) and the co-ordinate axes lies in the first quadrant. If its area is 2, then the value of b is 
  • -1
  • 3
  • -3
  • 1
If the tangent to the curve { 2y }^{ 3 }={ ax }^{ 2 }+{ x }^{ 3 } at the point (a,a) cuts off intercepts \alpha and \beta on the coordinate axes such that { \alpha  }^{ 2 }+{ \beta  }^{ 2 }=61, then a=
  • \pm 30
  • \pm 5
  • \pm 6
  • \pm 61
If m be the slope of a tangent to the curve { e }^{ 2y }=1+4{ x }^{ 2 }, then 
  • m<1
  • \left| m \right| \le 1
  • \left| m \right| >1 
  • None of these
If m be the slope of tangent to the curve e^{y}=1+x^{2} then 
  • |m|>1
  • m<1
  • |m|<1
  • |m|\leq 1
If the tangent to the curve \sqrt{x}+\sqrt{y}=\sqrt{a} at any points on it cuts the axes OX and OY at P and Q respectively then OP+OQ is
  • 2a
  • a
  • \displaystyle \frac{1}{2}a
  • none of these
P(2, 2) and Q\left ( \displaystyle \frac{1}{2}, -1 \right ) are two points on the parabola y^{2}=2x. The coordinates of the point R on the parabola, where tangent to the curve is parallel to the chord PQ is
  • \left ( \displaystyle \frac{5}{4}, \sqrt{\frac{5}{2}} \right )
  • (2, -1)
  • \left ( \displaystyle \frac{1}{8}, \frac{1}{2} \right )
  • none of these
The number of tangents to the curve y^{2}-2x^{3}-4y+8=0 that pass through (1, 0) is
  • 3
  • 1
  • 2
  • 6
The curve given by x+y=e^{xy} has a tangent as the y-axis at the point
  • (0, 1)
  • (1, 0)
  • (1, 1)
  • none of these
The equation of tangent to the curve y=e^{-\left | x \right |} at the point where the curve cuts the line x=1 is
  • x+y=e
  • e(x+y)=1
  • y+ex=1
  • none of these
The equation of tangent to the curve y=be^{-x/a} where it cuts the y-axis is
  • \displaystyle \frac{x}{a}+\frac{y}{b}=1
  • \displaystyle \frac{x}{a}+\frac{y}{b}=-1
  • \displaystyle \frac{x}{a}-\frac{y}{b}=1
  • none of these
If the line joining the points (0, 3) and (5, -2) is the tangent to the curve \displaystyle y=\frac{c}{x+1} then the value of c is
  • 1
  • -2
  • 4
  • none of these
The angle between two tangents to the ellipse \displaystyle \frac{x^{2}}{16}+\frac{y^{2}}{9}=1 at the points where the line y=1 cuts the curve is
  • \displaystyle \frac{\pi }{4}
  • \tan^{-1}\displaystyle \frac{6\sqrt{2}}{7}
  • \displaystyle \frac{\pi }{2}
  • none of these
The triangle formed by the tangent to the curve \displaystyle f(x)=x^{2}+bx-b at the point (1, 1) and the coordinates axes, lies in the first quadrant. If its area is 2 then the value of b is
  • -1
  • 3
  • -3
  • 1
Let y=f(x) be the equation of a parabola which is touches by the line y=x at the point where x=1. Then
  • f^{'}\left ( 0 \right )=f^{'}\left ( 1 \right )
  • f^{'}\left ( 1 \right )=1
  • f\left ( 0 \right )+f^{'}\left ( 0 \right )+f^{''}\left ( 0 \right )=1
  • 2f\left ( 0 \right )=1-f^{'}\left ( 0 \right )
Let the parabolas y=x^{2}+ax+b and y=x(c-x) touch each other at the point (1, 0). Then 
  • a=-3
  • b=1
  • c=2
  • b+c=3
The curve \displaystyle \frac{x^{n}}{a^{n}}+\frac{y^{n}}{b^{n}}=2 touches the line \displaystyle \frac{x}{a}+\frac{y}{b}=2 at the point
  • (b, a)
  • (a, b)
  • (1, 1)
  • \displaystyle \left ( \frac{1}{a}, \frac{1}{b} \right )
The normal to the curve 2x^{2}+y^{2}=12 at the point (2, 2) cuts the curve again at
  • \displaystyle \left ( -\frac{22}{9}, -\frac{2}{9} \right )
  • \displaystyle \left ( \frac{22}{9}, \frac{2}{9} \right )
  • (-2, -2)
  • none of these
The area bounded by the axes of reference and the normal to y=\log_{e}x at the point (1, 0) is
  • 1 unit^{2}
  • 2 unit^{2}
  • \displaystyle \frac{1}{2} unit^{2}
  • none of these
A point on the ellipse 4x^{2}+9y^{2}=36 where the tangent is equally inclided to the axes is
  • \displaystyle \left ( \frac{9}{\sqrt{13}}, \frac{4}{\sqrt{13}} \right )
  • \displaystyle \left ( -\frac{9}{\sqrt{13}}, \frac{4}{\sqrt{13}} \right )
  • \displaystyle \left ( \frac{9}{\sqrt{13}}, -\frac{4}{\sqrt{13}} \right )
  • \displaystyle \left ( \frac{4}{\sqrt{13}}, -\frac{9}{\sqrt{13}} \right )
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers