Explanation
dx=asinθ.dθ dy=acosθ.dθ Or −dxdy=−tanθ. Thus Equation of normal will be y−asinθ=−tanθ(x−a+acosθ) Or cosθ.y−asinθ.cosθ=−xsinθ+asinθ−asinθcosθ cosθ.y+sinθ.x=asinθ Hence it passes through the fixed point (a,0).
dx=a(−sinθ+θ.cosθ+sinθ).dθ dx=a(θ.cosθ) dy=a(θ.sinθ)dθ. Hence −dxdy=−cotθ. =tan(π2+θ) Hence it makes an angle of π2+θ with the x axis. Now equation of normal y−asinθ+aθ.cosθ=−cotθ(x−acosθ−θsinθ). Hence sinθy−asin2θ+aθ.cosθ.sinθ=−xcosθ+acos2θ+aθ.sinθ.cosθ y.sinθ+xcosθ=a Hence Distance from origin is 'a'.
Let x=a√cosθ y=a√sinθ Hence dydx =−cosθ.√cosθsinθ.√sinθ =cotθ32. Hence equation of tangent will be y−a√sinθ=−cosθ.√cosθsinθ.√sinθ(x−a√cosθ) sinθ.√sinθy−asin2θ=−cosθ√cosθx+acos2θ (sinθ)32.y+(cosθ)32x=a Hence the intercepts are Q=a(sinθ)32 and P=a(cosθ)32 Hence Q−43+P−43 =a−43[cos2θ+sin2θ] =a−43.
Please disable the adBlock and continue. Thank you.