Explanation
dx=a\sin \theta.d\theta dy=a\cos \theta.d\theta Or \dfrac{-dx}{dy}=-\tan\theta. Thus Equation of normal will be y-a\sin \theta=-\tan\theta(x-a+a\cos \theta) Or \cos \theta.y-a\sin \theta.\cos \theta=-x\sin \theta+a\sin \theta-a\sin \theta \cos \theta \cos \theta.y+\sin \theta.x=a\sin \theta Hence it passes through the fixed point (a,0).
dx=a(-\sin \theta+\theta.\cos \theta+\sin \theta).d\theta dx=a(\theta.\cos \theta) dy=a(\theta.\sin \theta)d\theta. Hence \dfrac{-dx}{dy}=-\cot\theta. =\tan(\dfrac{\pi}{2}+\theta) Hence it makes an angle of \dfrac{\pi}{2}+\theta with the x axis. Now equation of normal y-a\sin \theta+a\theta.\cos \theta=-\cot\theta(x-a\cos \theta-\theta \sin \theta). Hence \sin \theta y-a\sin ^{2}\theta+a\theta.\cos \theta.\sin \theta=-x\cos \theta+a\cos ^{2}\theta+a\theta.\sin \theta.\cos \theta y.\sin \theta+x\cos \theta=a Hence Distance from origin is 'a'.
Let x=a\sqrt{\cos \theta} y=a\sqrt{\sin \theta} Hence \dfrac{dy}{dx} =-\dfrac{\cos \theta.\sqrt{\cos \theta}}{\sin \theta.\sqrt{\sin \theta}} =\cot\theta^{\dfrac{3}{2}}. Hence equation of tangent will be y-a\sqrt{\sin \theta}=-\dfrac{\cos \theta.\sqrt{\cos \theta}}{\sin \theta.\sqrt{\sin \theta}}(x-a\sqrt{\cos \theta}) \sin \theta.\sqrt{\sin \theta}y-a\sin ^{2}\theta=-\cos \theta\sqrt{\cos \theta}x+a\cos ^{2}\theta (\sin \theta)^{\dfrac{3}{2}}.y+(\cos \theta)^{\dfrac{3}{2}}x=a Hence the intercepts are Q=\dfrac{a}{(\sin \theta)^{\dfrac{3}{2}}} and P=\dfrac{a}{(\cos \theta)^{\dfrac{3}{2}}} Hence Q^{\dfrac{-4}{3}}+P^{\dfrac{-4}{3}} =a^{-\dfrac{4}{3}}[\cos ^{2}\theta+\sin ^{2}\theta] =a^{-\dfrac{4}{3}}.
Please disable the adBlock and continue. Thank you.