Processing math: 8%

CBSE Questions for Class 11 Commerce Applied Mathematics Tangents And Its Equations Quiz 5 - MCQExams.com

The sum of the intercepts made on the axes of coordinates by any tangent to the curve x+y=2 is equal to
  • 4
  • 2
  • 8
  • none of these
A tangent to the curve y=x0|t|dt, which is parallel to the line y=x, cuts off an intercept from the y-axis equal to
  • 1
  • 12
  • 12
  • 1
Slope of Normal to the curve y=x21x2 at (1,0) is
  • 14
  • 14
  • 4
  • 4
If the normal to the curve y=f(x) at the point (3,4) makes an angle 3π4 with the positive x-axis then f(3) is equal to
  • 1
  • 34
  • 43
  • 1
Angle between the tangents to the curve y=x25x+6 at the points (2,0) and (3,0) is
  • π2
  • π3
  • π6
  • π4
The number of tangents to the curve \displaystyle y= e^{\left | x \right |} at the point (0,1) is
  • 2
  • 1
  • 4
  • 0
The curve y+e^{xy}+x= 0 has a tangent parellel to y-axis at a point
  • \left ( -1,\:0 \right )
  • \left ( 1,\:0 \right )
  • \left ( 1,\:1 \right )
  • \left ( 0,\:0 \right )
The tangent to the curve \displaystyle y=e^{x} drawn at the point \displaystyle \left ( c, e^{c} \right ) intersects the line joining the points \displaystyle \left ( c-1, e^{c-1} \right )\displaystyle \left ( c+1, e^{c+1} \right )
  • on the left of \displaystyle x=c
  • on the right of \displaystyle x=c
  • at no point
  • at all points
  • Assertion is true and Reason is true; Reason is a correct explanation for Assertion.
  • Assertion is True, Reason is true; Reason is not a correct explanation for Assertion.
  • Assertion is true, Reason is false
  • Assertion is false, Reason is true
\displaystyle y=4x^{2} and \displaystyle y= x^{2}.
The two curves
  • intersect each other
  • touch each other
  • do not meet
  • represent parabola
The normal to the curve x=a\left ( 1-\cos \theta  \right ), y=a\sin \theta at \theta always passes through the fixed point
  • (0, 0)
  • (0, a)
  • (a, 0)
  • (a, a)
The normal to the curve x=a\left ( \cos \theta +\theta \sin \theta  \right ), y=a\left ( \sin \theta -\theta \cos \theta  \right ) at any point \theta is such that
  • it makes angle \displaystyle \frac{\pi }{2}+\theta with x-axis
  • it passes through the origin
  • it is at a constant distance from the origin
  • it passes through \displaystyle \left ( a\frac{\pi }{2}, -a \right )
The curve possessing the property text the intercept made by the tangent at any point of the curve on the y- axis is equal to square of the abscissa of the point of tangency, is given by
  • y^{2}=x+C
  • y=2x^{2}+C
  • y=-x^{2}+cx
  • None\ of\ these
Which of this/these is/are tangent(s) to \displaystyle 3x^{2}+y^{2}+x+2y=0 and also is/are perpendicular to the line 4x-2y=1 ? 
  • 2y+x=0
  • 2y-x = 2
  • 2y +x +4 = 0
  • \displaystyle 2y+x+\frac{13}{3}=0
If the tangent at P  on the curve \displaystyle x^{m}y^{n}=a^{m+n} meets the co-ordinates axes at A and B, then AP: PB=
  • m^2:n^2
  • m^3:n^3
  • m:n
  • 2m:n
Find the equation of the tangent to the curve at any point (X, Y).
\displaystyle \frac{x^{m}}{a^{m}}+\frac{y^{m}}{b^{m}}=1.
  • \displaystyle \frac{X}{a}\left ( \frac{x}{a} \right )^{m-1}+\frac{Y}{b}\left ( \frac{y}{b} \right )^{m-1}=1
  • \displaystyle \frac{X}{b}\left ( \frac{x}{a} \right )^{m-1}+\frac{Y}{a}\left ( \frac{y}{b} \right )^{m-1}=1
  • \displaystyle \frac{X}{a}\left ( \frac{x}{b} \right )^{m-1}+\frac{Y}{b}\left ( \frac{y}{a} \right )^{m-1}=1
  • \displaystyle \frac{X}{b}\left ( \frac{x}{b} \right )^{m-1}+\frac{Y}{b}\left ( \frac{y}{b} \right )^{m-1}=1
For the equation \displaystyle x^{2/3}+y^{2/3}=a^{2/3}, find the equation of tangent at the point \displaystyle x=a\sin ^{3}\theta, y=a\cos ^{3} \theta.
  • \displaystyle y-a\cos ^{3}\theta =\frac{\cos \theta }{\sin \theta }(x-a \sin ^{3}\theta )
  • \displaystyle y-a\cos ^{3}\theta =-\frac{\cos \theta }{\sin \theta }(x-a \sin ^{3}\theta )
  • \displaystyle y-a\cos ^{3}\theta =-\frac{\cos \theta }{\sin \theta }(x+a \sin ^{3}\theta )
  • none of these
Find the condition that the line \displaystyle Ax+By= 1 may be a normal to the curve \displaystyle a^{n-1}y=x^{n}.
  • \displaystyle a^{n}B\left ( B^{2}+nA^{2} \right )^{n}=A^{n}n^{n}.
  • \displaystyle a^{n-1}B\left ( B^{2}+nA^{2} \right )^{n-1}=A^{n}n^{n}.
  • \displaystyle a^{n}B\left ( B^{2}+nA^{2} \right )^{n-1}=A^{n}n^{n}.
  • \displaystyle a^{n-1}B\left ( B^{2}-nA^{2} \right )^{n-1}=A^{n}n^{n}.
If the normal to the curve y=f(x) at the point (3,4) makes an angle 3\pi /4 with the positive x-axis, then f'(3)=
  • -1
  • 0
  • 1
  • \sqrt 3
Find the slopes of the tangents of the curve y=(x+1)(x-3) at the points where it cuts the X-axis.
  • 4
  • -4
  • 2
  • -2
If the normal to the curve y = f(x) at the point (3, 4) makes an angle \dfrac{3\pi }{4} with the positive x-axis, then f'(3) is equal to
  • -1
  • -\dfrac{3 }{4}
  • \dfrac{4}{5}
  • 1
If the tangent at the point \displaystyle \left ( at^{2},at^{3} \right ) on the curve \displaystyle ay^{2}= x^{3} meets the curve again at Q.then the co-ordinates of Q is/are 
  • \displaystyle \left ( -\frac{1}{4}at^{2},-\frac{1}{8}at^{3} \right ).
  • \displaystyle \left ( \frac{1}{4}at^{2},-\frac{1}{8}at^{3} \right ).
  • \displaystyle \left ( \frac{1}{4}at^{3},-\frac{1}{8}at^{2} \right ).
  • \displaystyle \left ( -\frac{1}{4}at^{3},-\frac{1}{8}at^{3} \right ).
What are the tangent and normal to the curve x=\displaystyle \frac{2at^{2}}{1+t^{2}}, y= \displaystyle \frac{2at^{3}}{a+t^{2}} at the point for which \displaystyle t=\frac{1}{2}
  • \displaystyle 16x+13y=9a , \displaystyle 13x-16y=2a
  • \displaystyle 13x-16y=2a , \displaystyle 16x+13y=9a
  • \displaystyle 16x-13y=9a , \displaystyle 13x+16y=2a
  • \displaystyle 13x+16y=2a , \displaystyle 16x-13y=9a
A and B are points (-2,0) and (1,3) on the curve \displaystyle y=4-x^{2}. If the tangent at P on the curve be parallel to chord AB, then co-ordinates of point P are 
  • \displaystyle \left ( -\frac{1}{3}, \frac{5}{3} \right )
  • \displaystyle \left ( \frac{1}{2}, -\frac{15}{4} \right )
  • \displaystyle \left ( -\frac{1}{2}, \frac{15}{4} \right )
  • \displaystyle \left ( -\frac{1}{3}, \frac{1}{5} \right )
Normal to the curve y=\displaystyle x^{3}-2x^{2}+4 at the point where x=2
  • 3x+4y=18
  • x+4y=18
  • 4x+3y=18
  • 4x+y=18
Find the points on the curve y=x^{3}, the tangents at which are inclined at an angle of 60^{\circ} to x-axis.
  • x=\pm\dfrac{1}{\sqrt{\sqrt{3}}}, y =\dfrac{1}{\sqrt{3}}.\dfrac{1}{\sqrt{\sqrt{3}}}.
  • x=\dfrac{1}{\sqrt{\sqrt{3}}}, y =\dfrac{1}{\sqrt{3}}.\dfrac{1}{\sqrt{\sqrt{3}}}.
  • x=\pm\dfrac{1}{\sqrt{\sqrt{3}}}, y =\pm \dfrac{1}{\sqrt{3}}.\dfrac{1}{\sqrt{\sqrt{3}}}.
  • x=-\dfrac{1}{\sqrt{\sqrt{3}}}, y =\pm \dfrac{1}{\sqrt{3}}.\dfrac{1}{\sqrt{\sqrt{3}}}.
Find the points on the curve y=x/(1-x^{2}) where the tangents makes an angle of \pi /4 with x-axis
  • (\sqrt { 3 } ,-\sqrt { \dfrac { 2 }{ 3 } } ),(-\sqrt { 2 } ,\sqrt { \dfrac { 2 }{ 3 } } )
  • (\sqrt { 3 } ,-\sqrt { \dfrac { 3 }{ 4 } } ),(-\sqrt { 3 } ,\sqrt { \dfrac { 3 }{ 4 } } )
  • (\sqrt { 3 } ,-\sqrt { \dfrac { 3 }{ 2 } } ),(-\sqrt { 3 } ,\sqrt { \dfrac { 3 }{ 2 } } )
  • none of these
Find the equations of the tangents drawn to the curve \displaystyle y= x^{4} which are drawn from the point (2,0).
  • \displaystyle y= 0 and \displaystyle y-\left ( \frac{4}{3} \right )^{4}= 4\left ( \frac{4}{3} \right )^{3}\left ( x-\frac{4}{3} \right )
  • \displaystyle y= 0 and \displaystyle y-\left ( \frac{8}{3} \right )^{4}= 4\left ( \frac{8}{3} \right )^{3}\left ( x-\frac{8}{3} \right )
  • \displaystyle y= 0 and \displaystyle y-\left ( \frac{4}{3} \right )^{4}= 4\left ( \frac{8}{3} \right )^{2}\left ( x-\frac{8}{3} \right )
  • \displaystyle y= 0 and \displaystyle y-\left ( \frac{8}{3} \right )^{4}= 4\left ( \frac{8}{3} \right )^{2}\left ( x-\frac{8}{3} \right )
The points of contact of the tangents drawn from the origin to the curve y=\sin{x} lie on the curve
  • {x}^{2}-{y}^{2}=xy
  • {x}^{2}+{y}^{2}={x}^{2}{y}^{2}
  • {x}^{2}-{y}^{2}={x}^{2}{y}^{2}
  • None\ of\ these
The curve \displaystyle y-e^{xy}+x=0 has a vertical tangent at the point 
  • (1,\ 1)
  • no\ point
  • (0,\ 1)
  • (1,\ 0)
Let f(x, y) be a curve in the x-y plane having the property that distance from the origin of any tangent to the curve is equal to distance of point of contact from the y- axis. Of f(1, 2)=0, then all such possible curves are 
  • x^2+y^2=5x
  • x^2-y^2=5x
  • x^2y^2=5x
  • All\ of\ these
At what point p(x,y)of the curve \displaystyle y=e^{-\left | x \right |} should a tangent  be drawn so that area of the triangle bounded by the tangent and the co-ordinate axes be greatest ?
  • \displaystyle \left ( \pm e, 1 \right )
  • \displaystyle \left ( \pm 1,\dfrac 1e \right )
  • \displaystyle \left ( 1,\pm \dfrac 1e \right )
  • \displaystyle \left ( \pm 1, e \right )
If \displaystyle x\cos \alpha +y\sin \alpha =p touches \displaystyle x^{2}+a^{2}y^{2}=a^{2}, then
  • \displaystyle p^{2}=a^{2}\sin^{2}\alpha +\cos^{2}\alpha
  • \displaystyle p^{2}=a^{2}\cos^{2}\alpha +\sin^{2}\alpha
  • \displaystyle 1/p^{2}=\sin^{2}\alpha +\alpha^{2}\cos^{2}\alpha
  • \displaystyle 1/p^{2}=\cos^{2}\alpha +\alpha^{2}\sin^{2}\alpha
The point of intersection of the tangents drawn to the curve \displaystyle x^{2}y=1-y at the points where it is met by the curve \displaystyle xy=1-y is given by
  • \displaystyle \left ( 0, -1\right )
  • \displaystyle \left ( 1, 1\right )
  • \displaystyle \left ( 0, 1\right )
  • none of these
If the line ax+by+c=0 is a normal to the curve xy=1, then
  • \displaystyle a> 0, b> 0
  • \displaystyle a> 0, b< 0
  • \displaystyle a< 0, b> 0
  • \displaystyle a< 0, b< 0
Find the co-ordinates of the points on the curve \displaystyle y= x/\left ( 1+x^{2} \right ) where the tangent to the curve has greatest slope.
  • \left(\displaystyle \sqrt 3, \frac {\sqrt 3}4\right)
  • (\displaystyle 0, 0)
  • \left(\displaystyle -\sqrt 3, -\frac {\sqrt 3}4\right)
  • \left(\displaystyle 1, \frac {1}2\right)
The sum of the intercepts of a tangent to \displaystyle \sqrt{x}+\sqrt{y}=\sqrt{a}, a> 0 upon the coordinate axes is
  • 2a
  • a
  • a/2
  • \displaystyle \sqrt{a}
The equation of tangent to the curve \displaystyle y=1-e^{\tfrac x2} at the point where it meets y - axis is -
  • x + 2y = 0
  • 2x + y = 0
  • x - y = 2
  • None of these
The line y=x is a tangent to the parabola \displaystyle y= ax^{2}+bx+c at the point x=1.If the parabola passes through the point (-1,0), then determine a, b, c.
  • \displaystyle a= \frac{1}{2}, b= \frac{1}{4}, c= \frac{1}{3}.
  • \displaystyle a= \frac{1}{4}, b= \frac{1}{2}, c= \frac{1}{4}.
  • \displaystyle a= 2, b= 1, c= 4.
  • \displaystyle a= 4, b= 2, c= 4.
The parametric equations of a curve are given by \displaystyle x= \sec ^{2}t, y= \cot t. Tangent at \displaystyle P \,t=\dfrac { \pi }4 meets the curve again at Q; then \displaystyle PQ=?
  • \left ( 2\sqrt{5} \right ).
  • \dfrac {\left ( 5\sqrt{5} \right )}2.
  • \dfrac {\left ( 3\sqrt{5} \right )}2.
  • \left ( 3\sqrt{5} \right ).
The line \dfrac xa+\dfrac yb=1 touches the curve \displaystyle y=be^{-x/a} at the point
  • (a,b/a)
  • (-a,b/a)
  • (a,a/b)
  • None of these
If the tangent at (1, 1) on  \displaystyle y^{2}= x\left ( 2-x^{2} \right ) meets the curve again at P, then P is
  • \displaystyle \left (4, 4 \right )
  • \displaystyle \left (-1, 2 \right )
  • \displaystyle \left (9/4, 3/8 \right )
  • None\ of\ these
If the line, \displaystyle ax+by+c= 0 is a normal to the curve xy=2, then
  • a < 0, b > 0
  • a > 0, b < 0
  • a > 0, b > 0
  • a < 0, b < 0
The coordinates of the point M(x, y) on \displaystyle y= e^{-\left | x \right |} so that the area formed by the coordinates axes and the tangent at M is greatest, are
  • (e, 1)
  • \displaystyle \left (1, e^{-1} \right )
  • \displaystyle \left (-1, e^{-1} \right )
  • (0, 1)
The slope of the tangent to the curve represented by x= t^{2}+3t-8 and y= 2t^{2}-2t-5 at the point M\left ( 2,-1 \right ) is

  • 7/6
  • 2/3
  • 3/2
  • 6/7
The curve y= ax^{3}+bx^{2}+cx+8  touches x-axis at P\left ( -2,0 \right ) and cuts the y-axis at a point Q(0,8) where its gradient isThe values of a, b, c are respectively

  • -\displaystyle \frac{1}{2},-\frac{3}{4},3
  • \displaystyle 3, -\frac{1}{2},-4
  • \displaystyle -\frac{1}{2},-\frac{7}{4},2
  • none of these
The value of m for which the area of the triangle included between the axes and any tangent to the \displaystyle x^{m}y= b^{m} curve is constant, is
  • \dfrac 12
  • 1
  • \dfrac 32
  • 2
If the tangent at any point on the curve \displaystyle x^{4}+y^{4}= a^{4} cuts off intercepts p and q on the coordinate axes, the value of \displaystyle p^{-\tfrac 43}+q^{-\tfrac 43} is
  • \displaystyle a^{-\tfrac 43}
  • \displaystyle a^{-\tfrac 12}
  • \displaystyle a^{\tfrac 12}
  • none of these
The equation of the tangent to the curve \displaystyle y= \left ( 2x-1 \right )e^{2\left ( 1-x \right )} at the point of its maximum is
  • y=1
  • x=1
  • x+y=1
  • x-y=-1
The coordinates of the point on the curve \displaystyle \left ( x^{2}+1 \right )\left ( y-3 \right )=x where a tangent to the curve has the greatest slope are given by
  • \displaystyle \left ( \sqrt{3}, 3+\sqrt{3}/4 \right )
  • \displaystyle \left ( -\sqrt{3}, 3-\sqrt{3}/4 \right )
  • \displaystyle \left ( 0, 3 \right )
  • none of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers