CBSE Questions for Class 11 Commerce Applied Mathematics Tangents And Its Equations Quiz 6 - MCQExams.com

The points of contact of the vertical tangents $$x= 2-3\sin \theta $$, $$y= 3+2\cos \theta $$ are
  • $$\left ( 2,5 \right ),\left ( 2,1 \right )$$
  • $$\left ( -1,3 \right ),\left ( 5,3 \right )$$
  • $$\left ( 2,5 \right ),\left ( 5,3 \right )$$
  • $$\left ( -1,3 \right ),\left ( 2,1 \right )$$
Tangent is drawn to ellipse $$\displaystyle \frac{x^{2}}{27}+y^{2}=1$$ at $$\left ( 3\sqrt{3}\cos \theta ,\sin \theta  \right )$$ (where $$\theta \in \left ( 0,\dfrac{\pi}2 \right )).$$ Then the value of $$\theta$$ such that sum of intercepts on axes made by this tangent is least is
  • $$\dfrac {\pi}3$$
  • $$\dfrac {\pi}6$$
  • $$\dfrac {\pi}8$$
  • $$\dfrac {\pi}4$$
The tangent to the curve $$\displaystyle 3xy^{2}-2x^{2}y=1$$  at $$(1, 1)$$ meets the curve again at the point
  • $$\displaystyle \left ( \frac{16}{5},\frac{1}{20} \right )$$
  • $$\displaystyle \left (- \frac{16}{5},-\frac{1}{20} \right )$$
  • $$\displaystyle \left ( \frac{1}{20},\frac{16}{5} \right )$$
  • $$\displaystyle \left ( -\frac{1}{20},\frac{16}{5} \right )$$
The angle at which the curve $$y=ke^{kx}$$ intersects the $$y$$ -axis is
  • $$\tan ^{-1}(k^{2})$$
  • $$\cot ^{-1}(k^{2})$$
  • $$\sin ^{-1}\left ( 1/\sqrt{1+k^{4}} \right )$$
  • $$



    \sec ^{-1}\left ( 1/\sqrt{1+k^{4}} \right )$$
The lines tangent to the curves $$\displaystyle y^{3}-x^{2}y+5y-2x=0$$ and $$\displaystyle x^{4}-x^{3}y^{2}+5x+2y=0$$ at the origin intersect at an angle $$\displaystyle \theta $$ equal to
  • $$\displaystyle \frac{\pi }{6}$$
  • $$\displaystyle \frac{\pi }{4}$$
  • $$\displaystyle \frac{\pi }{3}$$
  • $$\displaystyle \frac{\pi }{2}$$
Let $$\displaystyle f\left ( x \right )=x^{3}+ax+b$$ with $$\displaystyle a\neq b$$ and suppose the tangent lines to the graph of $$f$$ at $$x = a$$ and $$x = b$$ have the same gradient Then the value of $$f (1)$$ is equal to
  • $$0$$
  • $$1$$
  • $$\displaystyle -\frac{1}{3}$$
  • $$\displaystyle \frac{2}{3}$$
A curve with equation of the form $$\displaystyle y=ax^{4}+bx^{3}+cx+d$$ has zero gradient at the point (0, 1) and also touches the x-axis at the point (-1, 0) then the values of x for which the curve has a negative gradient are
  • x > -1
  • x < 1
  • x < -1
  • $$\displaystyle -1\leq \times \leq 1$$
For the curve represented parametrically by the equations $$\displaystyle x=2\ln\cot t+1$$ and $$\displaystyle y=\tan t+\cot t$$
  • normal at $$t = \displaystyle \dfrac {\pi }4$$ is parallel to y=axis
  • tangent at $$t = \displaystyle \dfrac {\pi }4$$ is parallel to x-axis
  • tangent at $$t = \displaystyle \dfrac {\pi }4$$ is parallel to the line $$y = x$$
  • normal at $$t = \displaystyle \dfrac {\pi }4$$ is parallel to the line $$y = x$$
If a variable tangent to the curve $$\displaystyle x^{2}y=c^{3}$$ makes intercepts $$a, b$$ on $$x$$ and $$y$$ axis respectively then the value of $$\displaystyle x^{2}$$ is
  • $$\displaystyle 27c^{3}$$
  • $$\displaystyle \frac4{27}c^{3}$$
  • $$\displaystyle \frac{27}{4}c^{3}$$
  • $$\displaystyle \frac4{9}c^{3}$$
The coordinates of the point(s) on the graph of the function $$\displaystyle f(x)=\frac{x^{3}}3{-\frac{5x^{2}}{2}}+7x-4$$ where the tangent drawn cut off intercepts from the coordinate axes which are equal in magnitude but opposite in sign is
  • $$(2,\dfrac 83)$$
  • $$(3, \dfrac 72)$$
  • $$(1,\dfrac  56)$$
  • none
The number of values of c such that the straight line $$3x + 4y = c$$ touches the curve $$\displaystyle \frac{x^{4}}{2}=x+y$$ is
  • $$0$$
  • $$1$$
  • $$2$$
  • $$4$$
Find all the tangents to the curve $$\displaystyle y=\cos \left ( x+y \right ),-2\pi \leq \times \leq 2\pi $$ that are parallel to the line $$x + 2y = 0$$
  • $$\displaystyle x + 2\: y=\dfrac {\pi }2$$ & $$\displaystyle x +2y=-\dfrac {3\pi }2$$
  • $$\displaystyle x + 2\: y=\dfrac {\pi }2$$ & $$\displaystyle x +2y=-\dfrac {\pi }2$$
  • $$\displaystyle x + 2\: y=-\dfrac {3\pi }2$$ & $$\displaystyle x +2y=-\dfrac {3\pi }2$$
  • $$\displaystyle x + 2\: y=\dfrac {3\pi }2$$ & $$\displaystyle x +2y=-\dfrac {3\pi }2$$
The angle at which the curve $$\displaystyle y=ke^{kx}$$ intersects the y - axis is
  • $$\displaystyle \tan ^{-1}k^{2}$$
  • $$\displaystyle \cot ^{-1}\left ( k^{2} \right )$$
  • $$\displaystyle \sin ^{-1\left ( \dfrac{1}{\sqrt{1+k^{4}}} \right )}$$
  • $$\displaystyle \sec {-1\left ( \sqrt{1+k^{4}} \right )}$$
The abscissa of the point on the curve $$\displaystyle \sqrt{xy}=a+x$$ the tangent at which cuts off equal intercepts from the co-ordinate axes is (a > 0)
  • $$\displaystyle \dfrac{a}{\sqrt{2}}$$
  • $$\displaystyle- \dfrac{a}{\sqrt{2}}$$
  • $$\displaystyle a\sqrt{2}$$
  • $$\displaystyle -a\sqrt{2}$$
Consider the curve $$\displaystyle f(x)=x^{1/3}$$ then
  • the equation of tangent at (0, 0) is x = 0
  • the equation of normal at (0, 0) is y = 0
  • normal to the curve does not exist at (0, 0)
  • f(x) and its inverse meet at exactly 3 points
Equation of the line through the point $$(1/2,2)$$ and tangent to the parabola $$\displaystyle y=\frac{-x^{2}}{2}+2$$ and secant to the curve $$\displaystyle y=\sqrt{4-x^{2}}$$ is
  • $$2x + 2y - 5 = 0$$
  • $$2x + 2y - 9 = 0$$
  • $$y - 2 = 0$$
  • none
Equation of a trangent to the curve $$\displaystyle y\cot x=y^{3}\tan x$$ at the point where the abscissa is $$\displaystyle \frac{\pi }{4}$$ is 
  • $$\displaystyle 4x+2y=\pi +2$$
  • $$\displaystyle 4x-2y=\pi +2$$
  • x = 0
  • y = 0
If the curve $$\displaystyle { \left( \frac { x }{ a }  \right)  }^{ n }+{ \left( \frac { y }{ b }  \right)  }^{ n }=2$$ touches the straight line $$\displaystyle \frac { x }{ a } +\frac { y }{ b } =2$$, then find the value of $$n$$.
  • $$2$$
  • $$3$$
  • $$4$$
  • any real number
Find the equation of the normal to the curve $$\displaystyle y = \left ( 1+x \right )^{y}+\sin ^{-1}\left ( \sin ^{2}x \right )$$ at $$x = 0$$
  • $$x + y - 1 = 0$$
  • $$x + y - 2 = 0$$
  • $$x + y - 3 = 0$$
  • $$x + y - 4 = 0$$
Find the equation of normal to the curve $$\displaystyle x^{2}=4y$$ passing through the point $$(1, 2)$$
  • $$x + y = 3$$
  • $$x-y=3$$
  • $$2x-y=4$$
  • $$2x-3y=1$$
A function is defined parametrically by the equations
x= $$\displaystyle 2t+t^{2}\sin \frac{1}{t}$$   if $$\displaystyle t\neq 0$$;    $$ 0  $$,   otherwise
  and 
y = $$\displaystyle \frac{1}{t}\sin t^{2}$$   if $$\displaystyle t\neq 0$$;    $$ 0  $$,   otherwise
Find the equation of the tangent and normal at the point for t = 0 if they exist
  • Tangent ;$$ 2y - x = 0;$$ Normal: $$2x + y = 0$$
  • Tangent ;$$ 3y - x = 0;$$ Normal: $$2x + y = 0$$
  • Tangent ;$$ 2y - x = 0;$$ Normal: $$3x + y = 0$$
  • Tangent ;$$ 3y - x = 0;$$ Normal: $$3x + y = 0$$
The curve $$\displaystyle y=ax^{3}+bx^{2}+cx+5$$ touches the $$x$$ - axis at $$P(-2, 0)$$ and cuts the $$y$$-axis at a point $$Q$$, where its gradient is $$3$$. Find $$a, b, c$$.
  • $$\displaystyle a=-\frac{1}{5}, b=1,c=3$$
  • $$\displaystyle a=-\frac{1}{4}, b=-1,c=4$$
  • $$\displaystyle a=-\frac{1}{4}, b=0,c=3$$
  • $$\displaystyle a=-\frac{1}{3}, b=1,c=-3$$
The slope of the normal to the curve $$\displaystyle x=a\left ( \theta -\sin \theta  \right ),\: \: y=a\left ( 1-\cos \theta  \right )$$ at point $$\displaystyle \theta =\dfrac{\pi }2$$ is
  • $$0$$
  • $$1$$
  • $$-1$$
  • $$\dfrac 1{\displaystyle \sqrt{2}}$$
The equation of the normal to the curve $$\displaystyle y^{2}=4ax $$ at point $$(a, 2a)$$ is
  • $$x - y + a = 0$$
  • $$x + y - 3a = 0$$
  • $$x + 2y + 4a = 0$$
  • $$x + y + 4a = 0$$
The tangent at a point $$P$$ of a curve meets the $$y-$$ axis at $$A$$ and the line parallel to $$y-$$ axis at $$A$$, and the line parallel to $$y-$$ axis through $$P$$ meets the $$x-$$ axis at $$B$$. If area of $$\Delta OAB$$ is constant ($$O$$ being the origin). Then the curve is
  • $$cx^2-xy+k=0$$
  • $$x^{2}+y^{2}=cx$$
  • $$3x^{2}+4y^{2}=k$$
  • $$xy-x^{2}y^{2}+kx=0$$
A tangent to the hyperbola $$\displaystyle y=\frac { x+9 }{ x+5 } $$ passing though the origin is
  • $$x+25y=0$$
  • $$5x+y=0$$
  • $$5x-y=0$$
  • $$x-25y=0$$
asymptotes of the graph
  • $$\displaystyle x=\frac{3\pi }{2}$$
  • $$\displaystyle x=-\frac{\pi }{2}$$
  • $$\displaystyle x=\frac{\pi }{2}$$
  • $$\displaystyle x=-\frac{3\pi }{2}$$
Let $$f$$ be a continuous, differentiable and bijective function. If the tangent to $$y=f\left( x \right) $$ at $$x=b$$, then there exists at least one $$c\in \left( a,b \right) $$ such that 
  • $$f'\left( c \right) =0$$
  • $$f'\left( c \right) >0$$
  • $$f'\left( c \right) <0$$
  • none of these
The slope of normal to the curve $$\displaystyle y^{2}=4ax$$ at a point $$\displaystyle \left ( at^{2},2at \right )$$ is
  • $$\dfrac 1  t$$
  • $$t$$
  • $$-t$$
  • $$-\dfrac 1  t$$
The coordinates of the point P on the graph of the function $$\displaystyle y=e^-{\left | x \right |},$$ where area of triangle made by tangent and the coordinate axis has the greatest area, is
  • $$\displaystyle \left ( 1,\frac{1}{e} \right )$$
  • $$\displaystyle \left ( -1,\frac{1}{e} \right )$$
  • $$\displaystyle \left ( e,e^{-e} \right )$$
  • none
On the ellipse, $$4x^2\, +\, 9y^2\, =\, 1$$, the points at which the tangents are parallel to the line $$8x = 9y$$ are
  • $$\left ( \displaystyle \frac{2}{5},\,\frac{1}{5} \right )$$
  • $$\left ( -\displaystyle \frac{2}{5},\,\frac{1}{5} \right )$$
  • $$\left ( -\displaystyle \frac{2}{5},\,-\frac{1}{5} \right )$$
  • $$\left ( \displaystyle \frac{2}{5},\,-\frac{1}{5} \right )$$
The slope of the tangent to the curve $$xy + ax - by = 0$$ at the point $$(1, 1)$$ is $$2$$ then values of $$a$$ and $$b$$ are respectively -
  • $$1, 2$$
  • $$2, 1$$
  • $$3, 5$$
  • None of these
It $$\displaystyle x=t^{2}$$ and $$y = 2t$$ then equation of normal at $$t = 1$$ is -
  • $$x + y + 3 = 0$$
  • $$x + y + 1 = 0$$
  • $$x + y - 1 = 0$$
  • $$x + y - 3 = 0$$
The equation of the tangent to the curve $$\displaystyle \frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=\frac{2}{\sqrt{a}}$$ at point $$(a, a)$$ is
  • $$\displaystyle \frac{a}{\sqrt{x}}+\frac{a}{\sqrt{y}}={2}\sqrt a$$
  • $$x + y = 2a$$
  • $$\displaystyle \sqrt{x}+\sqrt{y}=2\sqrt{a}$$
  • None of these
Consider the curved mirror $$y=f(x)$$ passing through $$(0, 6)$$ having the property that all light rays emerging from origin, after getting reflected from the mirror becomes parallel to $$x-$$ axis, then the equation of curve is
  • $$y^2=4(x-y)$$ or $$y^2=36(9+x)$$
  • $$y^2=4(1-x)$$ or $$y^2=36(9-x)$$
  • $$y^2=4(1+x)$$ or $$y^2=36(9-x)$$
  • $$None\ of\ these$$
The point where the tangent line to the curve $$\displaystyle y=e^{2x}$$ at $$(0, 1)$$ meets $$x$$ - axis is -
  • $$(1, 0)$$
  • $$(-1, 0)$$
  • $$\displaystyle \left ( -\dfrac12,0 \right )$$
  • None of these
The slope of the tangents to the curve $$y = (x + 1) (x - 3)$$ at the points where it crosses x - axis are
  • $$\displaystyle \pm 2 $$
  • $$\displaystyle \pm 3 $$
  • $$\displaystyle \pm 4$$
  • None of these
The equation of tangent at the point $$\displaystyle \left ( at^{2},at^{3} \right )$$ on the curve $$\displaystyle ay^{2}=x^{3}$$ is
  • $$\displaystyle 3tx-2y=at^{3}$$
  • $$\displaystyle tx-3y=at^{3}$$
  • $$\displaystyle 3tx+2y=at^{3}$$
  • None of these
The equation of the normal to the curve $$ \left (\displaystyle x=at^{2} \right ), \left (y=2at \right )$$ at '$$t$$' point is -
  • $$\displaystyle ty=x+at^{2}$$
  • $$\displaystyle y+tx-2at-at^{3}=0$$
  • $$\displaystyle y=tx-2at-at^{3}$$
  • None of these
The equation of the tangent to the curve is $$\displaystyle y=2\sin x+\sin 2x$$ at the point $$\displaystyle x=\dfrac {\pi }3$$ is -
  • $$\displaystyle 2y=\sqrt{3}$$
  • $$\displaystyle 3y=\sqrt{2}$$
  • $$\displaystyle 2y=3\sqrt{3}$$
  • $$2y = 3$$
The equation of the tangent to the curve $$\displaystyle \sqrt{x}+\sqrt{y}=\sqrt{a}$$ at the point $$\displaystyle \left ( x_{1},y_{1} \right )$$ is -
  • $$\displaystyle \frac{x}{\sqrt{x_{1}}}+\frac{y}{\sqrt{y_{1}}}=\frac{1}{\sqrt{a}}$$
  • $$\displaystyle \frac{x}{\sqrt{x_{1}}}+\frac{y}{\sqrt{y_{1}}}=\sqrt{a}$$
  • $$\displaystyle x\sqrt{x_{1}}+y\sqrt{y_{1}}=\sqrt{a}$$
  • None of these
The coordinates of the point on the curve $$\displaystyle y=x^{2}+3x+4$$ the tangent at which passes through the origin are -
  • $$(-2, 2), (2, 14)$$
  • $$(1, -1), (3, 4)$$
  • $$(2, 14), (2, 2)$$
  • $$(1, 2), (14, 3)$$
At what point the tangent line to the curve $$\displaystyle y=\cos \left ( x+y \right ),\left ( -2\pi \leq x\leq 2\pi  \right )$$ is parallel to $$x + 2y = 0$$
  • $$\displaystyle \left ( \dfrac {\pi }2, 0 \right )$$
  • $$\displaystyle \left ( -\dfrac {\pi }2, 0 \right )$$
  • $$\displaystyle \left (\dfrac{ 3\pi }2, 0 \right )$$
  • $$\displaystyle \left (-\dfrac{ 3\pi }2,\dfrac { \pi }2 \right )$$
The point at which the tangent to the curve $$\displaystyle y=x^{3}+5$$ is perpendicular to the line $$x + 3y = 2$$ are
  • $$(6, 1), (-1, 4)$$
  • $$(6, 1) (4, -1)$$
  • $$(1, 6), (1, 4)$$
  • $$(1, 6), (-1, 4)$$
A normal  $$P(x,y)$$ on a curve meets the $$X-$$axis at $$Q$$ and $$N$$ is the ordinate at $$P$$. 
If $$NQ=\dfrac {x(1+y^2)}{1+x^2} $$.
Then the equation of curves passing through $$(3,1)$$ is
  • $$5(1+y^2)=(1+x^2)$$
  • $$5(1+y^2)=5(1+x^2)$$
  • $$5(1+x^2)=(1+y^2)$$
  • None of these
At what point of the curve $$\displaystyle y=2x^{2}-x+1$$ tangent is parallel to $$y = 3x + 4$$
  • $$(0, 1)$$
  • $$(1, 2)$$
  • $$(-1, 4)$$
  • $$(2, 7)$$
Tangents are drawn from origin to the curve $$\displaystyle y=\sin x$$ then point of contect lies on -
  • $$\displaystyle x^{2}=y^{2}$$
  • $$\displaystyle x^{2}y^{2}=0$$
  • $$\displaystyle x^{2}y^{2}=x^{2}-y^{2}$$
  • None of these
A tangent to the curve $$\displaystyle y=x^{2}+3x$$ passes through a point $$(0, -9)$$ if it is drawn at the point -
  • $$(-3, 0)$$
  • $$(1, 4)$$
  • $$(0, 0)$$
  • $$(-4, 4)$$
The equation of the normal to the curve $$\displaystyle y^{2}=x^{3}$$ at the point whose abscissa is $$8$$ is -
  • $$\displaystyle x\pm \sqrt{2}y=104$$
  • $$\displaystyle x\pm 3\sqrt{2}y=104$$
  • $$\displaystyle 3\sqrt{2}x\pm y=104$$
  • None of these
The normal to the curve $$\displaystyle \sqrt{x}+\sqrt{y}=\sqrt{a}$$ is perpendicular to $$x$$ axis at the point
  • $$(0, a)$$
  • $$(a, 0)$$
  • $$(\dfrac a  4, \dfrac a  4)$$
  • No where
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers