Explanation
Equation of tangent is y−2x+1=0
It is tangent at x=1, so for x=1
y−2(1)+1=0⇒y=1
So, its is tangent to the curve at (1,1)
Slope of tangent =−(−21)=2
xy+ax+by=0y+xdydx+a+bdydx=0
Now dydx=2 at (1,1)
1+1(2)+a+b(2)=0⇒a+2b=−3 .....(i)
(1,1) also lies on the curve xy+ax+by=0
⇒1(1)+a(1)+b(1)=0⇒a+b=−1 .......(ii)
Solving (i) and (ii), we get
⇒a=1,b=−2
So, option E is correct.
dydx=yx2(given)
∫dydx=∫dxx2
⇒logy=−1x+c
⇒y=e−1x+c
⇒y=e−1x,c
since this curve is passing through point (1,3)
so, 3=e−1t.c
⇒c=3e
therefore , eqn of the curve is
y=e−1x.3e
⇒y=3e−1x+1
⇒y=3e1−1x
We have,
√x+√y=√a
Differentiation this equation with respect to x and we get,
ddx(√x+√y)=ddx√a
12√x+12√ydydx=0
12√ydydx=−12√x
dydx=−√y√x
At point (x1,y1)
(dydx)(x1,y1)=−√y1√x1
We know that,
Equation of tangent.
y−y1=dydx(x−x1)
y−y1=−√y1√x1(x−x1)
y√x1−y1√x1=−√y1(x−x1)
y√x1−y1√x1=−x√y1+x1√y1
y√x1+x√y1=y1√x1+x1√y1
On divide √x1y1 both side and we get,
y√x1+x√y1√x1√y1=y1√x1+x1√y1√x1√y1
y√y1+x√x1=√y1+√x1
x√x1+y√y1=√a
x23+y23=a23
Then,
ddx(x23+y23)=ddx(a23)
\dfrac{2}{3}{{x}^{-\frac{1}{3}}}+\dfrac{2}{3}{{y}^{-\frac{1}{3}}}\dfrac{dy}{dx}=0
{{x}^{-\frac{1}{3}}}+{{y}^{-\frac{1}{3}}}\dfrac{dy}{dx}=0
\dfrac{dy}{dx}={{\left( -\dfrac{x}{y} \right)}^{-\frac{1}{3}}}
\dfrac{dy}{dx}={{\left( -\dfrac{y}{x} \right)}^{\frac{1}{3}}}
At point \left( a, 0 \right)
{{\left( \dfrac{dy}{dx} \right)}_{\left( a,0 \right)}}={{\left( -\dfrac{y}{x} \right)}^{\frac{1}{3}}}_{\left( a,0 \right)}
{{\left( \dfrac{dy}{dx} \right)}_{\left( a,0 \right)}}={{\left( -\dfrac{0}{a} \right)}^{\frac{1}{3}}}
{{\left( \dfrac{dy}{dx} \right)}_{\left( a,0 \right)}}=0
Equation of normal is
y-{{y}_{1}}=-\dfrac{1}{{{\left( \dfrac{dy}{dx} \right)}_{\left( a,0 \right)}}}\left( x-{{x}_{1}} \right)
y-{{y}_{1}}=\dfrac{1}{0}\left( x-{{x}_{1}} \right)
Equation of normal at point \left( a,0 \right) and we get,
y-0=\dfrac{1}{0}\left( x-a \right)
x-a=0
x=a
Hence, this is the answer.
Please disable the adBlock and continue. Thank you.