CBSE Questions for Class 11 Commerce Applied Mathematics Tangents And Its Equations Quiz 8 - MCQExams.com

If the tangent to $$y^{2} = 4ax$$ at the point $$(at^{2}, 2at)$$ where $$|t| > 1$$ is a normal to $$x^{2} - y^{2} = a^{2}$$ at the point $$(a \sec \theta, a\tan \theta)$$, then
  • $$t = -cosec \theta$$
  • $$t = -\sec \theta$$
  • $$t = 2\tan \theta$$
  • $$t = 2\cot \theta$$
The equation of the tangent to the curve $$y={ x }^{ 3 }-6x+5$$ at $$(2,1)$$ is
  • $$6x-y-11=0$$
  • $$6x-y-13=0$$
  • $$6x+y+11=0$$
  • $$6x-y+11=0$$
The point on the curve $$y = \sqrt {x - 1}$$ where the tangent is perpendicular to the line $$2x + y - 5 = 0$$ is
  • $$(2, -1)$$
  • $$(10, 3)$$
  • $$(2, 1)$$
  • $$(5, -2)$$
The slope of the normal to the curve $$x=1-a\sin { \theta  } $$, $$y=b\cos ^{ 2 }{ \theta  }$$ at $$ \theta =\dfrac { \pi  }{ 2 } $$ is
  • $$\dfrac { a }{ 2b } $$
  • $$\dfrac { 2a }{ b } $$
  • $$\dfrac { a }{ b } $$
  • $$\dfrac { -a }{ 2b } $$
If the straight line $$ y -2x +1=0$$ is the tangent to the curve $$xy+ax+by=0$$ at $$x=1, $$ then the values of $$a$$ and $$b$$ are respectively :
  • 1 and 2
  • 1 and -1
  • -1 and 2
  • -1 and -2
  • 1 and -2
The tangents to curve $$y={ x }^{ 3 }-2{ x }^{ 2 }+x-2$$ which are parallel to straight line $$y=x$$, are
  • $$x+y=2$$ and $$x-y=\dfrac { 86 }{ 27 } $$
  • $$x-y=2$$ and $$x-y=\dfrac { 86 }{ 27 } $$
  • $$x-y=2$$ and $$x+y=\dfrac { 86 }{ 27 } $$
  • $$x+y=2$$ and $$x+y=\dfrac { 86 }{ 27 } $$
The slope of tangent to the curve $$ x=t^2 + 3t - 8, y = 2t^2 - 2t - 5 $$ at the point $$(2, -1)$$ is :
  • $$ \dfrac {22}{7} $$
  • $$ \dfrac {6}{7} $$
  • $$-6$$
  • None of these
The points at which the tangent to the curve $$y = x^3 - 3x^2 - 9x + 7$$ is parallel to the x-axis are 
  • $$(3, - 20)$$ and $$(- 1, 12)$$
  • $$(3, 20)$$ and $$(1, 12)$$
  • $$(1, -10)$$ and $$(2, 6)$$
  • None of these
The equation to the normal to the hyperbola $$\dfrac {x^{2}}{16} - \dfrac {y^{2}}{9} = 1$$ at $$(-4, 0)$$ is.
  • $$2x - 3y = 1$$
  • $$x = 0$$
  • $$x = 1$$
  • $$y = 0$$
The slope of the tangent to the curve $$y=3{ x }^{ 2 }-5x+6$$ at $$\left( 1,4 \right) $$ is
  • $$-2$$
  • $$1$$
  • $$0$$
  • $$-1$$
  • $$2$$
If the tangent at $$(1,1)$$ on $${ y }^{ 2 }=x{ (2-x) }^{ 2 }$$ meets the curve again at $$P$$, then $$P$$ is
  • $$(4,4)$$
  • $$(-1,2)$$
  • $$\left( \cfrac { 9 }{ 4 } ,\cfrac { 3 }{ 8 } \right) $$
  • $$(1,2)$$
The tangent to the curve $$y=a{ x }^{ 2 }+bx$$ at $$\left( 2,-8 \right) $$ is parallel to $$X$$-axis. Then,
  • $$a=2, b=-2$$
  • $$a=2, b=-4$$
  • $$a=2, b=-8$$
  • $$a=4, b=-4$$
If the slope of the tangent to the curve $$y=a{ x }^{ 3 }+bx+4$$ at $$(2,14) = 21$$, then the values of $$a$$ and $$b$$ are respectively
  • $$2,-3$$
  • $$3,-2$$
  • $$-3,-2$$
  • $$2,3$$
If the angle between the curves $$ y = 2^x $$ and $$ y=3^x $$ is $$ \alpha, $$ then the value of $$ \tan \alpha $$ is equal to :
  • $$ \dfrac { \log \left( \dfrac {3}{2} \right) } { 1 + ( \log 2)( \log 3 ) } $$
  • $$ \dfrac {6}{7} $$
  • $$ \dfrac {1}{7} $$
  • $$ \dfrac { \log \left( 6 \right) } { 1 + ( \log 2)( \log 3 ) } $$
  • $$ 0^o $$
If the tangent at each point of the curve $$y=\cfrac { 2 }{ 3 } { x }^{ 3 }-2a{ x }^{ 2 }+2x+5$$ makes an acute angle with positive direction of X-axis then
  • $$a\ge 1$$
  • $$-1\le a\le 1$$
  • $$a\le -1$$
  • None of these
The equation of the tangent to the curve $$\sqrt {\dfrac {x}{a}} + \sqrt {\dfrac {y}{b}} = 1$$ at the point $$(x_{1}, y_{1})$$ is $$\dfrac {x}{\sqrt {ax_{1}}} + \dfrac {y}{\sqrt {by_{1}}} = k$$. Then, the value of $$k$$ is
  • $$2$$
  • $$1$$
  • $$3$$
  • $$7$$
  • $$\sqrt {2}$$
The slope of the normal to the curve $$y = x^2 - \dfrac{1}{x^2}$$ at $$(-1, 0) $$ is 
  • $$\dfrac{1}{4}$$
  • $$ - \dfrac{1}{4}$$
  • $$4$$
  • $$-4$$
  • $$0$$
The point on the curve $$y = 5 + x - x^{2}$$ at which the normal makes equal intercepts is
  • $$(1, 5)$$
  • $$(0, -1)$$
  • $$(-1, 3)$$
  • $$(0, 3)$$
  • $$(0, 5)$$
A normal to parabola, whose inclination is $$30^o$$, cuts it again at an angle of.
  • $$\tan^{-1}\left(\displaystyle\frac{\sqrt{3}}{2}\right)$$
  • $$\tan^{-1}\left(\displaystyle\frac{2}{\sqrt{3}}\right)$$
  • $$\displaystyle\tan^{-1}\cdot(2\sqrt{3})$$
  • $$\displaystyle\tan^{-1}\left(\displaystyle\frac{1}{2\sqrt{3}}\right)$$
The slope of the tangent at the point $$(h, h)$$ of the circle $$x^{2} + y^{2} = a^{2}$$ is :
  • $$0$$
  • $$1$$
  • $$-1$$
  • Depends on $$h$$
The angle between the curves $$x^{2} + y^{2} = 25$$ and $$x^{2} + y^{2} - 2x + 3y - 43 = 0$$ at $$(-3, 4)$$ is
  • $$\tan^{-1}(1)$$
  • $$\tan^{-1}\left (\dfrac {1}{68}\right )$$
  • $$\dfrac {\pi}{2}$$
  • $$\tan^{-1}\left (\dfrac {3}{4}\right )$$
The angle at which the curve $$y={ x }^{ 2 }$$ and the curve $$x=\cfrac { 5 }{ 3 } \cos { t } ,y=\cfrac { 5 }{ 4 } \sin { t } $$ intersect is
  • $$\tan ^{ -1 }{ \cfrac { 2 }{ 41 } } $$
  • $$\tan ^{ -1 }{ \cfrac { 41 }{ 2 } } $$
  • $$-\tan ^{ -1 }{ \cfrac { 2 }{ 41 } } $$
  • $$2\tan ^{ -1 }{ \cfrac { 41 }{ 2 } } $$
The equation of the curve satisfying the differential equation $$y_{2}(x^{2} + 1) = 2xy_{1}$$ passing through the point $$(0, 1)$$ and having slope of tangent at $$x = 0$$ as $$3$$ is
  • $$y = x^{2} + 3x + 2$$
  • $$y = x^{2} + 3x + 1$$
  • $$y = x^{3} + 3x + 1$$
  • None of these
The slope of the tangent at each point of the curve is equal to the sum of the coordinate of the point. Then, the curve that passes through the origin is
  • $$x + y = e^{x} - 1$$
  • $$e^{x} = x + y$$
  • $$y = e^{x}$$
  • $$y = e^{x} + 1$$
A tangent PT is drawn to the circle $$x^2+y^2=4$$ at the point $$P(\sqrt{3}, 1)$$. A straight line L, perpendicular to PT is a tangent to the circle $$(x-3)^2+y^2=1$$. $$(1)$$ A possible equation of L is?
  • $$x-\sqrt{3}y=1$$
  • $$x+\sqrt{3}y=1$$
  • $$x-\sqrt{3}y=-1$$
  • $$x+\sqrt{3}y=5$$
The points of the curve $$y={ x }^{ 3 }+x-2$$ at which its tangent are parallel to the straight line $$y=4x-1$$ are
  • $$\left( 2,7 \right) ,\left( -2,-11 \right) $$
  • $$\left( 0,-2 \right) ,\left( { 2 }^{ 1/3 },{ 2 }^{ 1/3 } \right) $$
  • $$\left( { -2 }^{ 1/3 },{ -2 }^{ 1/3 } \right) \left( 0,-4 \right) $$
  • $$\left( 1,0 \right) ,\left( -1,-4 \right) $$
If the tangent at $$(1, 7)$$ to the curve $$x^{2} = y - 6$$ touches the circle $$x^{2} + y^{2} + 16x + 12y + c = 0$$ then the value of $$c$$ is
  • $$85$$
  • $$95$$
  • $$195$$
  • $$185$$
The point on the curve $$y^{2}=x$$ where tangent makes $$45^{o}$$ angle with $$x-$$axis ?
  • $$(\dfrac{1}{2},\dfrac{1}{4})$$
  • $$(\dfrac{1}{4},\dfrac{1}{2})$$
  • $$(4,2)$$
  • $$(1,1)$$
The tangent to $$\left( a{ t }^{ 2 },2at \right) $$ is perpendicular to X-axis at _____ point $$t\in R$$.
  • $$(4a,4a)$$
  • $$(a,2a)$$
  • $$(0,0)$$
  • $$(a,-2a)$$
If the tangent to the curve $$y=x\log { x } $$ at $$\left( c,f\left( x \right)  \right) $$ is parallel to the line-segment joining $$A\left(1,0\right)$$ and $$B\left(e,e\right)$$, then c=...... .
  • $$\dfrac {e-1}{e}$$
  • $$\log { \dfrac { e-1 }{ e } } $$
  • $${ e }^{ \dfrac { 1 }{ 1-e } }$$
  • $${ e }^{ \dfrac { 1 }{ e-1 } }$$
The equation of the curve passing through $$(1,3)$$ whose slope at any point $$(x,y)$$ on it is  $$\dfrac { y }{ { x }^{ 2 } }$$ is given by
  • $$y={ 3e }^{ -1/x }$$
  • $$y={ 3e }^{ 1-1/x }$$
  • $$y={ ce }^{ 1/x }$$
  • $$y={ 3e }^{ 1/x }$$
Line $$y=x$$ and curve $$y=x^2+bx+c$$ touches at $$(1, 1)$$ then __________.
  • $$b=-1, c=1$$
  • $$b=1, c=2$$
  • $$b=1, c=1$$
  • $$b=0, c=1$$
Find the angle between tangent of the curve $$y = (x + 1) (x - 3)$$ at the point where it cuts the axis of $$x$$.
  • $$\tan^{-1} \left(\dfrac{8}{15}\right)$$
  • $$\tan^{-1} \left(\dfrac{15}{8}\right)$$
  • $$\tan^{-1} 4$$
  • $$None\ of\ these$$
If the curves $$y^2 = 4ax$$ and $$xy = c^2$$ cut orthogonally then $$\dfrac{c^4}{a^4} =$$
  • $$4$$
  • $$8$$
  • $$16$$
  • $$32$$
An equation of the tangent to the curve $$y=x^{4}$$ from the point $$(2,0)$$ not on the curve is:
  • $$y=0$$
  • $$x=0$$
  • $$x+y=0$$
  • $$none\ of\ these$$
A point P moves such that sum of the slopes of the normal drawn from it to the hyperbola $$xy=16$$ is equal to the sum of the ordinates of the feet of the normal. Let 'P' lies on the curve C, then.
The equation of 'C' is?
  • $$x^2=4y$$
  • $$x^2=16y$$
  • $$x^2=12y$$
  • $$y^2=8x$$
The equation of the tangent to the curve $$y = b{e^{ -\dfrac{x}{a}}}$$ at a point , where $$x=0$$ is 
  • $$\dfrac{x}{a} - \dfrac{y}{b} = 1$$
  • $$\dfrac{y}{b} - \dfrac{x}{a} = 1$$
  • $$\dfrac{x}{a} + \dfrac{y}{b} = 1$$
  • $$\dfrac{x}{b} + \dfrac{y}{a} = 1$$
Area of the triangle formed by the tangent, normal to the curve $$x^{2}/a^{2}+y^{2}/b^{2}=1$$ at the point $$(a/\sqrt{2} , b/\sqrt{2})$$ and the $$x-$$axis is
  • $$\dfrac{ab}{4}\sqrt{a^{2}+b^{2}}$$
  • $$4ab$$
  • $$\dfrac{b}{4a}({a^{2}+b^{2}})$$
  • $$none$$
Find the slope of the normal to the curve $$2x^{2} - xy + 3y^{2} = 18$$ at $$(3,1)$$.
  • $$\dfrac {-11}{3}$$
  • $$\dfrac {3}{11}$$
  • $$\dfrac {11}{3}$$
  • $$\dfrac {-3}{11}$$
Area of the triangle formed by the tangent at $$x=2$$ on the curve $$y= \dfrac{8}{4+x^2}$$ with the coordinate axes is (in sq. units)

  • $$4$$
  • $$3$$
  • $$2$$
  • $$1$$
Find the points on the ellipse $$\dfrac{{{x^2}}}{4} + \dfrac{{{y^2}}}{9}=1$$ , on which the normals are parallel to the line $$3x-y=1$$.
  • $$(\pm\dfrac{6}{\sqrt {10}},\pm\dfrac{3}{\sqrt {10}})$$
  • $$(\pm\dfrac{3}{\sqrt {10}},\pm\dfrac{1}{\sqrt {10}})$$
  • $$(\pm\dfrac{1}{\sqrt {10}},\pm\dfrac{2}{\sqrt {10}})$$
  • None of these
The curve $$y = ax^3 + bx^2 + cx + 8$$ touches $$x-$$ axis at $$P(-2, 0)$$ and cuts $$y-$$ axis at a point $$Q$$ where its gradient is $$3$$. The values of $$a, b, c$$ are respectively ?
  • $$-\dfrac{5}{4}, -3, 3$$
  • $$0, \dfrac{1}{4},3$$
  • $$\dfrac{1}{4}, 0, 3$$
  • $$\dfrac{1}{4}, - \dfrac{1}{4}, 3$$
Number of different points on the curve $$y^2=x(x+1)^2$$ where the tangent to the curve drawn at $$(1, 2)$$ meets the curve, is?
  • $$0$$
  • $$1$$
  • $$2$$
  • $$3$$
The equation of tangent to the curve $$\sqrt {x}+ \sqrt {y}= \sqrt {a}$$ at the point $$\left( { x }_{ 1 },{ y }_{ 1 } \right) $$ is-
  • $$\dfrac { x }{ \sqrt { { x }_{ 1 } } } +\dfrac { y }{ \sqrt { { y }_{ 1 } } } =\dfrac { 1 }{ \sqrt { a } } $$
  • $$\dfrac { x }{ \sqrt { { x }_{ 1 } } } +\dfrac { y }{ \sqrt { { y }_{ 1 } } } ={ \sqrt { a } } $$
  • $$x\sqrt { { x }_{ 1 } } +y\sqrt { { y }_{ 1 } } =\sqrt { a } $$
  • $$None\ of\ these$$
The equation normal to the curve $$x^{2/3}+y^{2/3}=a^{2/3}$$ at the point $$(a, 0)$$ is-
  • $$x=a$$
  • $$x=-a$$
  • $$y=a$$
  • $$y=-a$$
The numbers of tangent to the curve $$y - 2 = {x^5}$$  which are drawn
from point $$\left( {2,2} \right)$$ is/are 
  • $$30$$
  • $$80$$
  • $$20$$
  • $$50$$
The curve y$$=ax^3+bx^2+cx+5$$ touches the x-axis at $$P(-2, 0)$$ then $$C=?$$
  • $$4a+5$$
  • $$4a-5$$
  • $$5-4a$$
  • $$0$$
If the normal to the curve $$y=f\left( x \right)$$ at $${(3,4)}$$ makes angle $$\dfrac {3\pi}{4}$$ with $$\bar {OX}$$ then $$f^{ 1 }\left( 3 \right)=$$
  • $$-1$$
  • $$1$$
  • $${(-3/4)}$$
  • $${(4/3)}$$
The curve satisfying D.E $$y dx - (x+3{y}^{2})dy=0$$ and passing through the point $$(1,1)$$ also passes through the point:
  • $$\left( \cfrac { 1 }{ 4 } ,-\cfrac { 1 }{ 2 } \right) $$
  • $$\left( -\cfrac { 1 }{ 3 } ,\cfrac { 1 }{ 3 } \right) $$
  • $$\left( \cfrac { 1 }{ 3 } ,-\cfrac { 1 }{ 3 } \right) $$
  • $$\left(- \cfrac { 1 }{ 4 } ,-\cfrac { 1 }{ 2 } \right) $$
If the curves $$\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{4}=1$$ and $$y^{2}=16x$$ intersect at right angles then value of $$a^{2}$$ is
  • $$2$$
  • $$4$$
  • $$\dfrac{8}{3}$$
  • $$\dfrac{16}{3}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers