Explanation
Number of possible tangents to the curve y = \cos \left( {x + y} \right), - 3\pi \leqslant x \leqslant 3\pi , that are parallel to the line x + 2y = 0, is
We have,
\sqrt{\dfrac{x}{a}}+\sqrt{\dfrac{y}{b}}=2\,\,.......\,\,\left( 1 \right)
\dfrac{\sqrt{x}}{\sqrt{a}}+\dfrac{\sqrt{y}}{\sqrt{b}}=2
On differentiation and we get,
\dfrac{1}{2\sqrt{x}\sqrt{a}}+\dfrac{1}{2\sqrt{y}\sqrt{b}}\dfrac{dy}{dx}=0
\dfrac{1}{2\sqrt{y}\sqrt{b}}\dfrac{dy}{dx}=-\dfrac{1}{2\sqrt{x}\sqrt{a}}
\dfrac{dy}{dx}=-\dfrac{\sqrt{y}\sqrt{b}}{\sqrt{x}\sqrt{a}}
At the point \left( a,\,b \right) and we get,
\dfrac{dy}{dx}=-\dfrac{\sqrt{b}\sqrt{b}}{\sqrt{a}\sqrt{a}}
\dfrac{dy}{dx}=-\dfrac{b}{a}
Equation of tangent is
y-{{y}_{1}}=\dfrac{dy}{dx}\left( x-{{x}_{1}} \right)
y-b=-\dfrac{b}{a}\left( x-a \right)
ay-ab=-bx+ab
ay+bx=2ab
\dfrac{ay+bx}{ab}=2
\dfrac{y}{b}+\dfrac{x}{a}=2
\dfrac{x}{a}+\dfrac{y}{b}=2
Please disable the adBlock and continue. Thank you.