MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Commerce Economics Measures Of Central Tendency Quiz 16 - MCQExams.com
CBSE
Class 11 Commerce Economics
Measures Of Central Tendency
Quiz 16
If x is the average(arithmetic mean) of $$5$$ consecutive odd integers, what is the median of integers?
Report Question
0%
$$0$$
0%
$$1$$
0%
$$x-2$$
0%
x
Calculate arithmetic mean salary from the following frequency distribution
X(Rs.in 000)
10-20
20-30
30-40
40-50
50- 60
60- 70
Y(Frequency)
2
3
6
5
2
2
Report Question
0%
352
0%
36.00
0%
35.5
0%
39.00
Explanation
X
10-20
20-30
30-40
40-50
50-60
60-70
Y
2
3
6
5
5
5
Class interval
mid values (x)
f
d=x-35
fd
10-20
15
2
-20
-40
20-30
25
3
-10
-30
30-40
35
6
0
0
40-50
45
5
10
50
50-60
55
2
20
40
60-70
65
2
30
60
Total
22
80
$$\overline{x} =A+\dfrac{\sum fd}{N}=35+\dfrac{(80)}{32}=38.6$$
Given Cups $$=400$$
$$\therefore 12\%$$ were broken
$$12\%$$ of $$400=\dfrac{12}{100}\times 400=48$$
$$\therefore48$$ cups were broken
In good condition $$=400-48=352$$
When there are 2 observations in the middle, median is calculated by ______.
Report Question
0%
taking both the values as median
0%
taking the mean of the two observations
0%
(N+1) / 2
0%
both B and C
Explanation
Median is the middle most value of a series. So when the series has odd number of elements then median can be calculated easily but when the series has even number of elements then the series has two middle values, so median is calculated either by taking out the average of both the value or the median is the (N+1)/2 th element of the series.
In a unimodal and symmetric distribution, the relationship between averages is like this
Report Question
0%
Mean > median > mode
0%
Mean < median < mode
0%
Mean = median = mode
0%
Mean > median < mode
For the following grouped frequency distribution find the mode:
Class:
3-6
6-9
9-12
12-15
15-18
18-21
21-24
Frequency:
2
5
10
23
21
12
3
Report Question
0%
13.9
0%
14.7
0%
15.1
0%
14.6
List of 5 pulse rates is: 70, 64, 80, 74, 92.what is the median for this list?
Report Question
0%
74
0%
76
0%
77
0%
80
Explanation
List of pulse rates: $$64,70,74,80,92$$
Median$$=74$$ (middle value)
Find the median of the given ogive:
Report Question
0%
150
0%
200
0%
148
0%
175
Explanation
From the given graph, median corresponds to $$300$$ count.
Therefore, median=value of $$x$$ at $$y=300$$
$$=175$$
Find the mode of data $$1, 2, 5, 3, 2, 3, 0, 5, 2$$.
Report Question
0%
$$3$$
0%
$$1$$
0%
$$5$$
0%
None of these
Explanation
$$\begin{matrix} \Rightarrow \frac { { dy } }{ { dx } } =\frac { { { y^{ 2 } }-2y } }{ { x-1 } } \\ \Rightarrow \frac { { dy } }{ { { y^{ 2 } }-2y } } =\frac { { dx } }{ { \left( { x-1 } \right) } } \\ \Rightarrow \int { \frac { { dy } }{ { y\left( { y-2 } \right) } } = } \frac { { dx } }{ { x-1 } } \\ \Rightarrow \int { \frac { { dy } }{ { y\left( { y-2 } \right) } } = } \log \left( { x-1 } \right) +c \\ Let \\ \Rightarrow \frac { 1 }{ { y\left( { y-2 } \right) } } =\frac { A }{ y } +\frac { B }{ { \left( { y-2 } \right) } } \\ \Rightarrow 1=Ay-2A+By \\ \Rightarrow 1+2A \\ \Rightarrow A=\frac { { -1 } }{ 2 } \\ and\, \, \left( { A+B } \right) y=0, \\ A+B=0\to (i) \\ Put\, \, A=\frac { { -1 } }{ 2 } \, \, in\, \, equation(i) \\ \frac { { -1 } }{ 2 } +B=0,\, \, B=\frac { 1 }{ 2 } \\ \Rightarrow \int { \frac { A }{ y } dy+\int { \frac { B }{ { \left( { y-2 } \right) } } dy=\log \left( { x-1 } \right) +c } } \\ \Rightarrow \frac { { -1 } }{ 2 } \int { \frac { { dy } }{ y } +\frac { 1 }{ 2 } \int { \frac { 1 }{ { \left( { y-2 } \right) } } =\log (x-1 } +c } \\ \Rightarrow \frac { { -1 } }{ 2 } \log y+\frac { 1 }{ 2 } \log \left( { y-2 } \right) =\log \left( { x-2 } \right) +\log c \\ \Rightarrow \frac { { -1 } }{ 2 } \left[ { \log \left( { \frac { { y-2 } }{ y } } \right) } \right] =\log \left( { x-1 } \right) c \\ \Rightarrow \log \sqrt { \frac { { y-2 } }{ y } } =\log \left( { x-1 } \right) c \\ \therefore \sqrt { \frac { { \left( { y-2 } \right) } }{ y } } =\left( { x-1 } \right) c \\ \Rightarrow \frac { y }{ y } \, \, \frac { { -2 } }{ y } ={ \left( { x-1 } \right) ^{ 2 } }{ c^{ 2 } } \\ \Rightarrow 1-{ \left( { x-1 } \right) ^{ 2 } }{ c^{ 2 } }=\frac { 2 }{ y } \\ \therefore y=\frac { 2 }{ { -1{ { \left( { x-1 } \right) }^{ 2 } }{ c^{ 2 } } } } \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, Ans. \\ \end{matrix}$$
If $$ y=sin\theta + \sqrt 3 cos \theta $$ , then range of y is :
Report Question
0%
$$ 0\quad \le \quad y\quad \le \quad 2 $$
0%
$$ -2\quad \le \quad y\quad \le \quad 0 $$
0%
$$ -2\quad \le \quad y\quad \le \quad 2 $$
0%
$$ 0\quad \le \quad y\quad \le \quad 4 $$
The median of set of nine distinct observation is 20.If each of the observation is increased by 2$$,$$ then the value of median of the new set of observations will be$$.$$
Report Question
0%
Increased by 2
0%
Increased by 4
0%
Remains unchanged
0%
Decreased by 2
0:0:1
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
10
0
Answered
0
Not Answered
0
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Commerce Economics Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page