Processing math: 49%

CBSE Questions for Class 12 Commerce Maths Relations And Functions Quiz 10 - MCQExams.com

Let f(x)={1+x,0x23x,2<x3, then find (fof)(x)
  • {2+x,0x12x,1<x24x,2<x3
  • {2x,0x12+x,1<x24x,2<x3
  • {2+x,0x12x,1<x24+x,2<x3
  • None of these
f(x)=1+|x2|,0x4
g(x)=2|x|,1x3
Which of the following is true
  • fog(x)={(1+x),1x0x+10<x2
  • gof(x)={x+1,0x<13x,1x2x1,2<x35x,3<x4
  • fog(x)={(1+2x),1x0x10<x2
  • gof(x)={x+1,0x<13x,1x2x+1,2<x35x,3<x4
Find the inverse of the quadratic function f.
f(x)=x2+2,x>=0
  • (2+x)
  • (2x)
  • (2+x2)
  • (2x)
If f(x)=x+5 and g(x)=x29  then find the domain of gof(x)
  • (-8,-2)
  • (,8)(2,)
  • (,8][2,)
  • ((,8][2,)
Let f(x)=lnx  and  g(x)=(x4x3+3x22x+22x22x+3)). The domain of f(g(x)) is
  • (,)
  • [0,)
  • (0,)
  • [1,)
If f(x)={x+1,ifx15x2ifx>1,g(x)={xifx12xifx>1
Number of negative integral solutions of g(f(x))+2=0 are 
  • 0
  • 3
  • 1
  • 2
Find the inverse of the exponential function f.
f(x)=ex1+3
  • ln(x1)+3
  • ln(x3)+1
  • ln(x1)
  • ln(x2)3
Given two functions f(x) and g(x) such that f(x)=sin(arctanx),g(x)=tan(arcsinx), and 0x<π2. The value of the composite function f(g(π10)) is:
  • 0.314
  • 0.354
  • 0.577
  • 0.707
  • 0.866
If f(x)=x2+x and g(x)=x, then the value of f(g(3)) is
  • 1.73
  • 3.46
  • 4.73
  • 7.34
  • 12.00
Find the inverse of the logarithmic function f.
f(x)=ln(x+2)3
  • ex+32
  • ex+12
  • ex+23
  • ex2+3
If f(x)=2x3 and g(x)=3x, calculate the value of g(f(2))f(g(2)).
  • 480
  • 384
  • 0
  • 384
  • 480
Find g(x), if f(x)=5x2+4 and f(g(3))=84
  • 3x10
  • 4x7
  • 6x17
  • x25
  • x23
Find the inverse of the cube root function f.
f(x)=(x+1)1/3
  • x3+1
  • x31
  • x1
  • x+1
Find the inverse of the logarithmic function f.
f(x)=ln(x)
  • ex
  • ex
  • e2x
  • e2x
Find the inverse of the square root function f.
f(x)=x1
  • x21
  • x2+1
  • x+1
  • x1
If the binary operation a # b=abb, then (2 # 4)(4 # 2)=
  • 32
  • 22
  • 0
  • 22
  • 32
Find the maximum value of g(f(x)) if:
f(x)=x+4 and
g(x)=6x2
  • 6
  • 4
  • 2
  • 4
  • 6
If h(x)=x2,g(x)=x23 and f(x)= x -2, what can you say about ho(gof) and (hog)of?
  • (hog)of ho(gof)
  • ho(gof) = (hog)of
  • (hog)of = 4 ho(gof)
  • ho(gof)=(x24x1)2
Which of the following functions are not identical?
  • f(x)=xx2 and g(x)=1x
  • f(x)=x2x and g(x)=
  • f(x)=Inx4 and g(x)= 4 In Xx
  • f(x) = In {(x-1)(x-2)} and g(x) = In (x-2)+In (x-3)
If f(x)=x+2and g(x)=x23, then which is true?
  • fog gog
  • 2fog = gof
  • fog = gof
  • fog = 2 gof
Let f:{x,y,z}{1,2,3} be a one-one mapping such that only one of the following three statements and remaining two are false : f(x)2,f(y)=2,f(z)1, then 
  • f(x)>f(y)>f(z)
  • f(x)<f(y)<f(z)
  • f(y)<f(y)<f(z)
  • f(y)<f(z)<f(x)
f(x)=x^2-x+5 and g(x) = f^{-1}(x). Then g'(7)=
  • 1
  • \dfrac{1}{2}
  • \dfrac{1}{13}
  • \dfrac{1}{4}
Let f: R\rightarrow R be a function such that f(x) = ax + 3\sin x + 4\cos x. Then f(x) is invertible if
  • a\in (-5,5)
  • a\in (-\infty,5)
  • a\in (-5,\infty)
  • None of the above
In the set Q^{+} of all positive rational numbers, the operation \ast is defined by the formula a\ast b = \dfrac {ab}{6}. Then, the inverse of 9 with respect to \ast is
  • 4
  • 3
  • \dfrac {1}{9}
  • \dfrac {1}{3}
The function f is defined as f=\{(x,y)|y=\frac{2x+1}{x-3} where x\neq 3\}. Find the value of K so that the inverse of f will be f^{-1}=\{(x, y)|y=\frac{3x+1}{x-k} where x\neq K\}
  • 1
  • 2
  • 3
  • 4
  • 5
If f(x) = 4x^{2} - 1 and g(x) = 8x + 7, g\circ f(2) =
  • 15
  • 23
  • 127
  • 345
  • 2115
Consider set A={1,2,3,4} and set B={0,2,4,6,8}then the number of one-one function set A to set B in which f(i)\neq i is,
  • 84
  • 78
  • 42
  • 24
Let f : N \rightarrow N, Where f(x) = x+(-1)^{x-1}, then the inverse of f is
  • f^{-1}(x) = x + (-1)^{x-1}, x \in N
  • f^{-1}(x) = 3x + (-1)^{x-1}, x \in N
  • f^{-1}(x) = x , x \in N
  • f^{-1}(x) = (-1)^{x-1}, x \in N
If f:R\rightarrow S defined by
f(x)=4\sin { x } -3\cos { x } +1 is onto, then S is equal to
  • [-5,5]
  • (-5,5)
  • (-4,6)
  • [-4,6]
f:\left( 0,\infty  \right) \rightarrow \left( 0,\infty  \right) is defined by f(x)=\begin{cases} { 2 }^{ x },\quad x\in \left( 0,1 \right)  \\ { 5 }^{ x },\quad x\in [1,\infty ) \end{cases} is
  • one-one but not onto
  • onto but not one-one
  • neither one-one nor onto
  • bijective
Let for a \neq a_{1} \neq 0,\ f(x)=ax^{2}+bx+c,\ g(x)=a_{1}x^{2}+b_{1}x+c_{1} and p(x)=f(x)-g(x). If p(x)=0 only for x=-1 and p(-2)=2, then the value of p(2) is
  • 6
  • 18
  • 3
  • 9
Given that f'(x) > g'(x) for all real x, and f(0) = g(0). Then f(x) < g(x) for all x belongs to
  • (0, \infty)
  • (- \infty, 0)
  • (- \infty, \infty)
  • none of these
Let f(x) = \dfrac {x}{1 - x} and let \alpha be a real number. If x_{0} = \alpha, x_{1} = f(x_{0}), x_{2} = f(x_{1}), .... and x_{2011} = - \dfrac {1}{2012} then the value of \alpha is
  • \dfrac {2011}{2012}
  • 1
  • 2011
  • -1
If \phi (x) = 3 f(\frac{x^2}{3} ) + f(3-x^2) \forall x \in (3,4) where  f(x) >0 \forall  x (-3,4) then \phi (x) is ____________.
  • (a) increasing in ( \frac{3}{2} ,4)
  • (b) decreasing in ( 3, \frac{3}{2} )
  • (c) increasing ( -\frac{3}{2} , 0)
  • decreasing in ( 0, \frac{3}{2})
Let f: R\rightarrow R; f(x)=2x^3-3(p+2)x^2+12px-7, -5\leq p \leq 5, p\in I. Then the number of values of p for f(x) to be invertible is?
  • 0
  • 1
  • 2
  • 3
If f(0)=5, then minimum possible number of values of x satisfying f(x)=5, for x\in [0, 170] is?
  • 21
  • 12
  • 11
  • 22
Let f(x) and g(x) be the differentiable functions for 1\le x\le 3 such that f(1)=2=g(1) and f(3)=Let there exist exactly one real number cE (1,3) such that 3f'(c)=g'(c), then the value of g(3) must be
  • 12
  • 13
  • 16
  • 26
Let f\left( x \right)={2^{10}}x + 1 and g\left( x \right) = {3^{10}}x - 1 , If \left( {fog} \right)\left( x \right) = x , then x is equal to
  • \dfrac{{{3^{10}} - 1}}{{{3^{10}} - {2^{ - 10}}}}
  • \dfrac{{{2^{10}} - 1}}{{{2^{10}} - {3^{ - 10}}}}
  • \dfrac{{1 - {3^{10}}}}{{{2^{10}} - {3^{ - 10}}}}
  • \dfrac{{1 - {2^{-10}}}}{{{3^{10}} - {2^{ - 10}}}}
A real valued function f(x) satisfies the function equation f(x-y)=f(x)f(y)-f(a-x)f(a+y) where a is a given constant and f(0)=1, f(2a-x) is equal to?
  • f(a)+f(a-x)
  • f(-x)
  • -f(x)
  • f(x)
If f(x)=|x| and g(x)=[x], then value of fog \left(-\dfrac {1}{4}\right)+gof \left(-\dfrac {1}{4}\right) is  ?
  • 0
  • 1
  • -1
  • 1/4
The function f : R\rightarrow R given by, then f(x)=3-2\sin x is
  • one-one
  • onto
  • bijective
  • None of these

The inverse of the function f\left( x \right) = \frac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}} + 2 is given by

  • \log {\left( {\frac{{x - 2}}{{x - 1}}} \right)^{1\backslash 2}}
  • \dfrac{1}{2}\log_e {\left( {\frac{{x - 1}}{{3-x}}} \right)}
  • \eqalign{& \log {\left( {\frac{x}{{2 - x}}} \right)^{1\backslash 2}} \cr & \cr}
  • \log {\left( {\frac{{x - 1}}{{3 - x}}} \right)^{1\backslash 2}}
If the function f : R \rightarrow R be such that f ( x ) = x - [ x ] where [ . ] denotes the greatest integer less than or equal to x then f ^ { - 1 } ( x ) is 
  • \frac { 1 } { x - [ x ] }
  • \frac { 1 } { x } - \frac { 1 } { x }
  • Not defined
  • x - [ x ]
If f(x)=x-\cfrac{1}{x} then number of solutions of f(f(f(x)))=1 is
  • 1
  • 2
  • 3
  • 4
Show that the function f:[0, \infty)\rightarrow [0, \infty) defined by f(x)=\dfrac{2x}{1+2x} is?
  • One-one and onto
  • One-one but not onto
  • Not one-one but onto
  • Neither one-one nor onto
If f(x)=1+|x-1|,-1 \le x \le 3 and g(x)=2-|x+1|,-2 \le x \le 2 then choose the appropriate option.
  • fog(x)=x-1 for x\ \in\ (0,1)
  • fog(x)=x for x\ \in\ (-1,1)
  • gog(x)=x for x\ \in\ (-1,2)
  • all\ of\ these
Let f(x)=\dfrac{x^{2}-4}{x^{2}+4} for |x|>2, then the function f:(-\infty, -2)\cup [2,\infty)\rightarrow (-1,1) is
  • One-one into
  • One-one onto
  • Many one into
  • Many one onto
If f(x)=ax+b and f(f(f(x)))=27x+13 where a and b are real numbers, then-
  • a+b=3
  • a+b=4
  • f'(x)=3
  • f'(x)=-3
If f\left( x \right)  = \sin ^{ 2 }{ x } + \sin ^{ 2 }({ { x }+\frac { \pi  }{ 3 })  + \cos { x\cos { \left( { x } + \frac { \pi  }{ 3 }  \right),  ~g(\frac { 5 }{ 4 })  = 1, \text{then} \left( gof \right)\left( x \right)  }  }\ \text{ is}\  \text{equal}\  \text{to}  }
  • 1
  • 0
  • \frac{1}{4}
  • \frac{1}{2}
f:A \rightarrow A,A=\left\{a_{1},a_{2},a_{3},a_{4},a_{5}\right\}, then the number of one one function so that f(x_{i})\neq x_{i},x_{i}\ \in\ A is
  • 44
  • 88
  • 22
  • 20
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers