Processing math: 100%

CBSE Questions for Class 12 Commerce Maths Relations And Functions Quiz 10 - MCQExams.com

Let f(x)={1+x,0x23x,2<x3, then find (fof)(x)
  • {2+x,0x12x,1<x24x,2<x3
  • {2x,0x12+x,1<x24x,2<x3
  • {2+x,0x12x,1<x24+x,2<x3
  • None of these
f(x)=1+|x2|,0x4
g(x)=2|x|,1x3
Which of the following is true
  • fog(x)={(1+x),1x0x+10<x2
  • gof(x)={x+1,0x<13x,1x2x1,2<x35x,3<x4
  • fog(x)={(1+2x),1x0x10<x2
  • gof(x)={x+1,0x<13x,1x2x+1,2<x35x,3<x4
Find the inverse of the quadratic function f.
f(x)=x2+2,x>=0
  • (2+x)
  • (2x)
  • (2+x2)
  • (2x)
If f(x)=x+5 and g(x)=x29  then find the domain of gof(x)
  • (-8,-2)
  • (,8)(2,)
  • (,8][2,)
  • ((,8][2,)
Let f(x)=lnx  and  g(x)=(x4x3+3x22x+22x22x+3)). The domain of f(g(x)) is
  • (,)
  • [0,)
  • (0,)
  • [1,)
If f(x)={x+1,ifx15x2ifx>1,g(x)={xifx12xifx>1
Number of negative integral solutions of g(f(x))+2=0 are 
  • 0
  • 3
  • 1
  • 2
Find the inverse of the exponential function f.
f(x)=ex1+3
  • ln(x1)+3
  • ln(x3)+1
  • ln(x1)
  • ln(x2)3
Given two functions f(x) and g(x) such that f(x)=sin(arctanx),g(x)=tan(arcsinx), and 0x<π2. The value of the composite function f(g(π10)) is:
  • 0.314
  • 0.354
  • 0.577
  • 0.707
  • 0.866
If f(x)=x2+x and g(x)=x, then the value of f(g(3)) is
  • 1.73
  • 3.46
  • 4.73
  • 7.34
  • 12.00
Find the inverse of the logarithmic function f.
f(x)=ln(x+2)3
  • ex+32
  • ex+12
  • ex+23
  • ex2+3
If f(x)=2x3 and g(x)=3x, calculate the value of g(f(2))f(g(2)).
  • 480
  • 384
  • 0
  • 384
  • 480
Find g(x), if f(x)=5x2+4 and f(g(3))=84
  • 3x10
  • 4x7
  • 6x17
  • x25
  • x23
Find the inverse of the cube root function f.
f(x)=(x+1)1/3
  • x3+1
  • x31
  • x1
  • x+1
Find the inverse of the logarithmic function f.
f(x)=ln(x)
  • ex
  • ex
  • e2x
  • e2x
Find the inverse of the square root function f.
f(x)=x1
  • x21
  • x2+1
  • x+1
  • x1
If the binary operation a # b=abb, then (2 # 4)(4 # 2)=
  • 32
  • 22
  • 0
  • 22
  • 32
Find the maximum value of g(f(x)) if:
f(x)=x+4 and
g(x)=6x2
  • 6
  • 4
  • 2
  • 4
  • 6
If h(x)=x2,g(x)=x23 and f(x)= x -2, what can you say about ho(gof) and (hog)of?
  • (hog)of ho(gof)
  • ho(gof) = (hog)of
  • (hog)of = 4 ho(gof)
  • ho(gof)=(x24x1)2
Which of the following functions are not identical?
  • f(x)=xx2 and g(x)=1x
  • f(x)=x2x and g(x)=
  • f(x)=Inx4 and g(x)= 4 In Xx
  • f(x) = In {(x-1)(x-2)} and g(x) = In (x-2)+In (x-3)
If f(x)=x+2and g(x)=x23, then which is true?
  • fog gog
  • 2fog = gof
  • fog = gof
  • fog = 2 gof
Let f:{x,y,z}{1,2,3} be a one-one mapping such that only one of the following three statements and remaining two are false : f(x)2,f(y)=2,f(z)1, then 
  • f(x)>f(y)>f(z)
  • f(x)<f(y)<f(z)
  • f(y)<f(y)<f(z)
  • f(y)<f(z)<f(x)
f(x)=x2x+5 and g(x)=f1(x). Then g(7)=
  • 1
  • 12
  • 113
  • 14
Let f:RR be a function such that f(x)=ax+3sinx+4cosx. Then f(x) is invertible if
  • a(5,5)
  • a(,5)
  • a(5,)
  • None of the above
In the set Q+ of all positive rational numbers, the operation is defined by the formula ab=ab6. Then, the inverse of 9 with respect to is
  • 4
  • 3
  • 19
  • 13
The function f is defined as f={(x,y)|y=2x+1x3 where x3}. Find the value of K so that the inverse of f will be f1={(x,y)|y=3x+1xk where xK}
  • 1
  • 2
  • 3
  • 4
  • 5
If f(x)=4x21 and g(x)=8x+7,gf(2)=
  • 15
  • 23
  • 127
  • 345
  • 2115
Consider set A=1,2,3,4 and set B=0,2,4,6,8then the number of one-one function set A to set B in which f(i)i is,
  • 84
  • 78
  • 42
  • 24
Let f:NN, Where f(x)=x+(1)x1, then the inverse of f is
  • f1(x)=x+(1)x1,xN
  • f1(x)=3x+(1)x1,xN
  • f1(x)=x,xN
  • f1(x)=(1)x1,xN
If f:RS defined by
f(x)=4sinx3cosx+1 is onto, then S is equal to
  • [5,5]
  • (5,5)
  • (4,6)
  • [4,6]
f:(0,)(0,) is defined by f(x)={2x,x(0,1)5x,x[1,) is
  • one-one but not onto
  • onto but not one-one
  • neither one-one nor onto
  • bijective
Let for aa10, f(x)=ax2+bx+c, g(x)=a1x2+b1x+c1 and p(x)=f(x)g(x). If p(x)=0 only for x=1 and p(2)=2, then the value of p(2) is
  • 6
  • 18
  • 3
  • 9
Given that f(x)>g(x) for all real x, and f(0)=g(0). Then f(x)<g(x) for all x belongs to
  • (0,)
  • (,0)
  • (,)
  • none of these
Let f(x)=x1x and let α be a real number. If x0=α,x1=f(x0),x2=f(x1),.... and x2011=12012 then the value of α is
  • 20112012
  • 1
  • 2011
  • 1
If ϕ(x)=3f(x23)+f(3x2)x(3,4) where  f(x)>0x(3,4) then ϕ(x) is ____________.
  • (a) increasing in (32,4)
  • (b) decreasing in (3,32)
  • (c) increasing (32,0)
  • decreasing in (0,32)
Let f:RR;f(x)=2x33(p+2)x2+12px7, 5p5, pI. Then the number of values of p for f(x) to be invertible is?
  • 0
  • 1
  • 2
  • 3
If f(0)=5, then minimum possible number of values of x satisfying f(x)=5, for x[0,170] is?
  • 21
  • 12
  • 11
  • 22
Let f(x) and g(x) be the differentiable functions for 1x3 such that f(1)=2=g(1) and f(3)=Let there exist exactly one real number cE(1,3) such that 3f'(c)=g'(c), then the value of g(3) must be
  • 12
  • 13
  • 16
  • 26
Let f(x)=210x+1 and g(x)=310x1 , If (fog)(x)=x , then x is equal to
  • 3101310210
  • 2101210310
  • 1310210310
  • 1210310210
A real valued function f(x) satisfies the function equation f(xy)=f(x)f(y)f(ax)f(a+y) where a is a given constant and f(0)=1,f(2ax) is equal to?
  • f(a)+f(ax)
  • f(x)
  • f(x)
  • f(x)
If f(x)=|x| and g(x)=[x], then value of fog(14)+gof(14) is  ?
  • 0
  • 1
  • 1
  • 1/4
The function f:RR given by, then f(x)=32sinx is
  • one-one
  • onto
  • bijective
  • None of these

The inverse of the function f(x)=exexex+ex+2 is given by

  • log(x2x1)12
  • 12loge(x13x)
  • log(x2x)12
  • log(x13x)12
If the function f:RR be such that f(x)=x[x] where [.] denotes the greatest integer less than or equal to x then f1(x) is 
  • 1x[x]
  • 1x1x
  • Not defined
  • x[x]
If f(x)=x1x then number of solutions of f(f(f(x)))=1 is
  • 1
  • 2
  • 3
  • 4
Show that the function f:[0,)[0,) defined by f(x)=2x1+2x is?
  • One-one and onto
  • One-one but not onto
  • Not one-one but onto
  • Neither one-one nor onto
If f(x)=1+|x1|,1x3 and g(x)=2|x+1|,2x2 then choose the appropriate option.
  • fog(x)=x1 for x  (0,1)
  • fog(x)=x for x  (1,1)
  • gog(x)=x for x  (1,2)
  • all of these
Let f(x)=x24x2+4 for |x|>2, then the function f:(,2)[2,)(1,1) is
  • One-one into
  • One-one onto
  • Many one into
  • Many one onto
If f(x)=ax+b and f(f(f(x)))=27x+13 where a and b are real numbers, then-
  • a+b=3
  • a+b=4
  • f'(x)=3
  • f'(x)=-3
If f(x)=sin2x+sin2(x+π3)+cosxcos(x+π3), g(54)=1,then(gof)(x)  is equal to
  • 1
  • 0
  • 14
  • 12
f:AA,A={a1,a2,a3,a4,a5}, then the number of one one function so that f(xi)xi,xi  A is
  • 44
  • 88
  • 22
  • 20
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers