Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

CBSE Questions for Class 12 Commerce Maths Relations And Functions Quiz 8 - MCQExams.com

Let f(x)=x2 and g(x)=2x. Then the solution of the equation fog(x)=gof(x) is
  • R
  • {0}
  • {0,2}
  • none
Let g(x)=1+x[x] and f(x)={1ifx<00ifx=01ifx>0 , then x,fog(x) equals 
  • x
  • 1
  • f(x)
  • g(x)
If f(x)=(axn)1/n where a>0 and n is a positive integer then (fof)(x) is 
  • f(x)
  • x
  • 0
  • 1
The inverse of the function f(x)=exexex+ex+2 is given by 
  • loge(x1x+1)2
  • loge(x2x+1)1/2
  • loge(x2x)1/2
  • loge(x13x)1/2
f:RR such that f(x)=n(x+x2+1). Another function g(x) is defined such that gof(x)=x  x R. Then g(2) is -
  • e2+e22
  • e2
  • e2e22
  • e2
Let f:RR is a function satisfying f(2x)=f(2+x) and f(20x)=f(x)xR
If f(0)=5 then the minimum possible no. of values of x satisfying f(x)=5 for x=[0.,70], is
  • 21
  • 12
  • 11
  • 22
All values of a for which f : R R defined by f(x)= x3+ax2+3x+100 is a one one functions, are
  • (,2)
  • (,4)
  • (4,4)
  • (3,3)
Let A={1,2,3} . Which of the following functions on A is invertible?
  • f={(1,1),(2,1),(3,1)}
  • f={(1,2),(2,3),(3,1)}
  • f={(1,2),(2,3),(3,2)}
  • f={(1,1),(2,2),(3,1)}
If f(x)=sin1(sinx)+cos1(sinx) and ϕ(x)=f(f(f(x))) then ϕ(x)
  • 1
  • sinx
  • 0
  • none of these
if f(x)=3x+2 , g(x)=x2+1,then the values of (fog)(x21)
  • 3x46x2+8
  • 3x4+3x+4
  • 6x4+3x22
  • 6x4+3x2+2
Let A = {1,2,3,4,5} and B={1,2,3,4,5}. If f:AB is an one-one function and f(x)=x holds only for one value of  xϵ{1,2,3,4,5}, then the number of such possible function is  
  • 120
  • 36
  • 45
  • 44
Difference between the greatest and the least values of the function
f(x)=x(lnx2) on [1,e2] is
  • 2
  • e
  • e2
  • 1
The function f:[12,12][π2,π2] defined by f(x)=sin1(3x4x3) is 
  • both one-one and onto
  • onto but not one-one
  • one-one but not onto
  • neither one-one nor onto
If f(x)=x1x+1, then f1(x) is
  • f(x)+1f(x)+3
  • 3f(x)+1f(x)+3
  • f(x)+3f(x)+1
  • f(x)+33f(x)+1
Let g be the inverse function of differentiable function f and G(x)=1g(x)iff(4=2) and f(4)=116, then the value of (G(2))2 equals to:
  • 1
  • 4
  • 16
  • 64
If f:(1,1)B , is a function defined by f(x)=tan12x1x2, then find B when f(x) is both one-one and onto function. 
  • [π2,π2]
  • (π2,π2)
  • (0,π2)
  • [0,π2)
If f(x)=x3+x2f(1)+xf, then f(x) is
  • one-one and onto
  • one-one and into
  • many-one and onto
  • non-invertible
The multiplicative inverse of the product of the additive inverse of x+1 is ________________.
  • x-1
  • \dfrac { 1 }{ 1-x }
  • { x }^{ 2 }-1
  • \dfrac { 1 }{ 1-{ x }^{ 2 } }
Let S be a non-empty set and P(S) be the power set of set S. Find the identity element for the union (\cup) as a binary operation on P(S).
  • \phi
  • 1
  • 0
  • None of these
If \begin{bmatrix} \sin { \left( \dfrac { \pi  }{ 2 }  \right)  }  & \cos { \left( \dfrac { \pi  }{ 3 }  \right)  }  \\ 2\tan { \left( \dfrac { \pi  }{ 4 }  \right)  }  & 2k \end{bmatrix} is not invertible, then k=
  • 2
  • \dfrac{1}{2}
  • 1
  • 3
Let N be the set of natural numbers and two functions f and g be defined as f,g : N\to N such that :
f (n)= \begin{cases}\dfrac{n+1}{2}& \text{if n is odd}\\ \dfrac{n}{2} & \text{in n is even} \end{cases}
and g(n) = n - (-1)^n. The fog is:
  • Both one-one and onto
  • One-one but not onto
  • Neither one-one nor onto
  • onto but not one-one
The numbers system which uses alphabets as well as numbers is-
  • Binary numbers system
  • Octal numbers system
  • Decimal numbers system
  • Hexadecimal numbers system
 f : R \rightarrow R , f ( x ) = e ^ { | x | } - e ^ { - x }  is many-one into function.
  • True
  • False
Number of one-one functions from A to B where n(A)=4, n(B)=5.
  • 4
  • 5
  • 120
  • 90
Let f(x)=x^ {135}+x^ {125}-x^ {115}+x^ {5}+1. If f(x) divided by x^ {3}-x, then the remainder is some function of x say g(x). Then g(x) is an:-
  • one-one function
  • many one function
  • into function
  • onto function
f : R \rightarrow R , f ( x ) = 2 x + | \sin x |  is one-one onto.
  • True
  • False
If   f : R \rightarrow R  be given by   f(x)=\left(3-x^{3}\right)^{\dfrac{1}{3}},  then fof(x) is
  • x^{\dfrac{1}{3}}
  • 1^{3}
  • x
  • \left(3-x^{3}\right)
Let : R\rightarrow R defined as f\left( x \right) =\dfrac { x\left( x+1 \right) \left( { x }^{ 4 }+1 \right) +{ 2x }^{ 4 }+{ x }^{ 2 }+2 }{ { x }^{ 2 }+x+1 }
  • odd and one-one
  • even and one-one
  • many to one and even
  • many to one and neither even nor odd
If a binary operation is defined a\star b=a^b then 2\star 2 is equal to:
  • 4
  • 2
  • 9
  • 8
If is a binary operation such that a * b = a^2 + b^2 then 3 * 5 is 
  • 34
  • 9
  • 8
  • 25
Consider f(x) = \dfrac{x^2}{1 + x^3} ; g(t) = \displaystyle \int f(t) dt . If g(1) = 0 then g(x) equals 
  • \dfrac{1}{3} ln(1 + x^3)
  • \dfrac{1}{3} ln\left ( \dfrac{1 + x^3}{2} \right )
  • \dfrac{1}{2} ln\left ( \dfrac{1 + x^3}{3} \right )
  • \dfrac{1}{3}l n\left ( \dfrac{1 + x^3}{3} \right )
Let f : R\rightarrow R be a function defined by f(x) = { x }^{ 3 }+{ x }^{ 2 }+3x+sin\times . Then f is.
  • one-one & onto
  • one-one & into
  • many one & onto
  • many one & into
A function f from the set of natural numbers to integers defined by f(n)=\begin{cases} \cfrac { n-1 }{ 2 } ,\quad \text{when n is odd} \\ -\cfrac { n }{ 2 } ,\quad \text{when n is even} \end{cases}  is
  • neither one-one nor onto
  • one-one but not onto
  • onto but not one-one
  • one-one and onto both
Let f:[2,\infty )\rightarrow X be defined by f(x)=4x-{x}^{2}. Then, f is invertible, if X=
  • [2,\infty)
  • (-\infty,2]
  • (-\infty,4]
  • [4,\infty)
If g(x)={ x }^{ 2 }+x-2 and \cfrac { 1 }{ 2 } (g\circ f(x))=2{ x }^{ 2 }-5x+2, then f(x) is equal to
  • 2x-3
  • 2x+3
  • 2{x}^{2}+3x+1
  • 2{x}^{2}-3x-1
If g(x)=x^2+x-1 and 
(gof)(x)=4x^2-10x+5, then
f\left(\dfrac{5}{4}\right) is equal to:
  • \dfrac{3}{2}
  • \dfrac{1}{2}
  • -\dfrac{3}{2}
  • -\dfrac{1}{2}
The inverse function of
f(x)  = \dfrac{8^{2x}-{8^{-2x}}} {8^{2x}+8^{-2x}}\in (-1, 1), is ________.
  • \dfrac{1}{4} \log_e\left(\dfrac{1-x}{1+x}\right)
  • \dfrac{1}{4} \log_e\left(\dfrac{1+x}{1-x}\right)
  • \dfrac{1}{4} (\log_e)\log_e\left(\dfrac{1-x}{1+x}\right)
  • \dfrac{1}{4} (\log_e)\log_e\left(\dfrac{1+x}{1-x}\right)
If f(x) = \dfrac{x+1}{x-1}, then the valueof f(f(x)) is equal to
  • x
  • 0
  • -x
  • 1
Let f : x \rightarrow y be such that f(1) = 2 and f(x + y) = f(x) f(y) for all natural numbers x and y. If \displaystyle \sum_{k= 1}^n f(a + k) = 16 (2^n - 1) , then a is equal to 
  • 3
  • 4
  • 5
  • 6
  • 7
If f(x)=\dfrac{(4x+3)}{(6x-4)}, x\neq \dfrac{2}{3} then (f o f)(x)=?
  • x
  • (2x-3)
  • \dfrac{4x-6}{3x+4}
  • None of these
If f(x)=\sqrt[3]{3-x^3} then (f o f)(x)=?
  • x^{1/3}
  • x
  • (1-x^{1/3})
  • None of these
Let f : R \rightarrow R : f(x) =x +1 and g : R \rightarrow R : g(x) = 2x -3 .
Find (f +g) (x).
  • 3x -2
  • 4x -5
  • 3x -4
  • 2x -3
If \displaystyle f(x) = | x - 2 | and g(x) = fof\,(x) , then for x > 20 , {g}\,'(x) =  

  • 2
  • 1
  • 3
  • None of these
If \displaystyle {f}'(x) = g\,(x) and \displaystyle {g}'(x) = - f\,(x) for all x and f\,(2) = 4 = {f}'(2) then \displaystyle f^{2}\,(19) + g^{2} \,(19) is 
  • 16
  • 32
  • 64
  • None of these
The value of f(0), so that the function
f(x) =  \dfrac{2x-sin^{-1}x}{2x+tan^{-1}x} is continuous at each point in its domain, is equal to
  • 2
  • 1/3
  • 2/3
  • -1/3
let f(x) = sin^2 x/2 + cos ^2 x/2 and g(x) = sec^2 x - tan ^2 x. The two functions are equal over the set
  • \phi
  • R
  • R-{ x:x (2n+1) \frac{\pi}{2}, n\in1}
  • None of these
Let f(n) denote the number of different ways in which the positive integer n can be expressed as the sum of 1s and 2s. For example, f(4) = 5, since 4 = 2 + 2 = 2 + 1 + 1 = 1 + 2 + 1 = 1 + 1 + 2 = 1 + 1 + 1 + 1. Note that order of 1s and 2s is important.
f : N\rightarrow N is
  • One-one and onto
  • One-one and into
  • Many-one and onto
  • Many-one and into
The function f(x)= \dfrac{(3^{x}-1^{})^2}{\sin x. \ln(1+x)}, x\neq 0 , is continuous at x=0. Then the value of f(0) is 
  • 2log 3
  • (\log_{e}3)^{2}
  • \log_{e} 6
  • None of these
Let f(x)= max { 1+sinx, 1, 1 -cosx}, x \epsilon [0, 2 \pi] and g(x)= max {1, |x-1|} x \epsilon R, then
  • g(f(0))=1
  • g(f(1))=1
  • f(f(1))=1
  • f(g(0))=1+sin1
If f: R\rightarrow R be given by f(x) = 3 + 4x and a_n = A + Bx, then which of the following is not true?
  • A + B + 1 = 2^{2n + 1}
  • | A - B| = 1`
  • lim_{n \to \infty} \dfrac{A}{B} = -1
  • None of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers