Explanation
Molecular weight of C{{O}_{2}}=12+16+16=44
Molecular weight of {{O}_{2}}=16+16=32
Molecular weight of C{{H}_{4}}=12+4=16
Molecular weight of S{{O}_{2}}=32+16+16=64
So;
S{{O}_{2}}has maximum Molecular weight.
Hence S{{O}_{2}} exert maximum amount of partial pressure.
Given,
volume - 0.820\ l
mass - 1.00\ g
pressure - 1.00\ atm
temperature - {3^{\rm O}}C
Using ideal gas equation - PV = nRT
n - number of mole = \dfrac{m}{M}
m - given mass
M - molar mass
PV = \dfrac{m}{M}RT
here, find the molar mass of the compound
M = \dfrac{{mRT}}{{PV}}
Firstly, change the temperature in Kelvin.
{3^{\rm O}}C + 273 = 276K
Now, put the value in the formula.
M = \dfrac{{1 \times 0.0820 \times 276}}{{1 \times 0.820}}
= 27.6\ g/mole
write each compound molar mass according to the given value and match it with this value.
(a) B{H_3} - 10.8 + 1 \times 3 = 13.8
(b) {B_4}{H_{10}} - 4 \times 10.8 + 1 \times 10 = 53.2
(c) {B_2}{H_6} - 2 \times 10.8 + 6 \times 1 = 27.6
(d) {B_3}{H_{12}} - 3 \times 10.8 + 12 \times 1 = 44.4
So, option (c) is the correct answer.
As no of moles of O_2=16/32=0.5 moles
no of moles of N_2=28/28=1 moles
no of moles of CH_4=8/16=0.5 moles
Total pressure=740mm
Partial pressure=total pressure\times mole fraction of N_2
Mole fraction of N_2 = No of moles of N_2 /total no of moles
=1/0.5+0.5+1=1/2
then partial pressure =1/2\times740
=370\ mm
Please disable the adBlock and continue. Thank you.