CBSE Questions for Class 12 Commerce Maths Relations And Functions Quiz 1 - MCQExams.com

If $$f(x) =x+\tan x$$ and $$f$$ is inverse of $$g$$, then $$g'(x)$$ is equal to
  • $$\dfrac{1}{1+[g(x)-x]^2}$$
  • $$\dfrac{1}{2-[g(x)+x]^2}$$
  • $$\dfrac{1}{2+(x-g(x))^2}$$
  • $$None\ of\ these$$
$$f:R\rightarrow R$$ is a function defined by $$f(x)=10x-7$$.  If  $$g=f^{-1}$$  then  $$g(x)=$$  
  • $$\dfrac{1}{10x-7}$$
  • $$\dfrac{1}{10x+7}$$
  • $$\dfrac{x+7}{10}$$
  • $$\dfrac{x-7}{10}$$
A constant function $$f:A\rightarrow B$$ will be one-one if
  • $$n (A) = n(B)$$
  • $$n(A) = 1$$
  • $$n (B) = 1$$
  • $$n (A) < n (B)$$
If $$f:\mathbb{N} \rightarrow \mathbb{N}$$ and $$f(x) = x^{2}$$ then the function is
  • not one to one function
  • one to one function
  • into function
  • none of these
$$f(x)=1$$, if $$x$$ is rational and $$f(x)=0$$, if $$x$$ is irrational
then  $$(fof)  (\sqrt{5})=$$
  • $$0$$
  • $$1$$
  • $$\sqrt{5}$$
  • $$\dfrac{1}{\sqrt{5}}$$
If $$f(x) = 3x + 2, g(x) = x^2 + 1$$, then the value of $$(fog) (x^2 +1)$$ is
  • $$3x^4 + 6x^2 + 8$$
  • $$3x^4 + 3x + 4$$
  • $$6x^4 + 3x^2 + 2$$
  • $$3x^2 + 6x + 2$$
If $$f:A\rightarrow B $$ is surjective then
  • no two elements of $$A$$ have the same image in $$B$$
  • every element of $$A$$ has an image in $$B$$
  • every element of $$B$$ has at least one pre-image in $$A$$
  • $$A$$ and $$B$$ are finite non empty sets
If $$f:(0,\infty )\rightarrow (0,\infty )$$ is defined by $$f(x)=x^{2}$$, then $$f^{-1}(x)=$$
  • $$\sqrt{x}$$
  • $$\dfrac{1}{\sqrt{x}}$$
  • Not invertible
  • $$\dfrac{2}{\sqrt{x}}$$
$$f:R\rightarrow R , g:R\rightarrow R$$ and  $$f(x)= \sin x$$, $$g(x)=x^{2}$$ then $$fog(x)=$$
  • $$x^{2}+\sin x$$
  • $$x^{2}\sin x$$
  • $$\sin^{2}x$$
  • $$\sin x^{2}$$
Find the value of $$\displaystyle \left( g\circ f \right) \left( 6 \right) $$ if $$\displaystyle g\left( x \right) ={ x }^{ 2 }+\frac { 5 }{ 2 } $$ and $$\displaystyle f\left( x \right) =\frac { x }{ 4 } -1$$.
  • 2.75
  • 3
  • 3.5
  • 8.625
The first component of all ordered pairs is called
  • Range
  • Domain
  • Function
  • None of these
The second component of all ordered pairs of a relation is
  • Range
  • Domain
  • mapping
  • none of these
A ______ maps elements of one set to another set.
  • order
  • set
  • relation
  • function
Suppose y is equal to the sum of two quantities of which one varies directly as x and the other inversely as x If y = 6 when x = 4 and $$\displaystyle y=\frac{10}{3}$$ when x = 3 then what is the relation between x and y?
  • $$\displaystyle y=x+\frac{4}{x}$$
  • $$\displaystyle y+2x=\frac{4}{x}$$
  • $$\displaystyle y=2x+\frac{8}{x}$$
  • $$\displaystyle y=2x-\frac{8}{z}$$
If X is brother of the son of Y's son. How is X related to Y?
  • Son
  • Brother
  • Cousin
  • Grandson
  • Uncle
In the group $$G = \left \{1, 5, 7, 11\right \}$$ under $$\otimes_{12}$$ the value of $$7\otimes_{12} 11^{-1}$$ is equal to
($$\otimes_{12}$$: under multiplication modulo $$12$$)
  • $$5$$
  • $$7$$
  • $$11$$
  • $$1$$
What is the relation for the statement "A is taller than B"?
  • is taller than
  • A is taller
  • B is taller
  • is less than
x varies directly as y and inversely as the square of z. When y = 4 and z is 14 x =If y = 16 and z = 7 what is x?
  • 180
  • 160
  • 280
  • 200
If $$f: R \rightarrow R$$ and $$g: R \rightarrow R$$ are defined by $$f(x) =2x +3, g(x)=x^2 + 7$$, what are the values of $$x$$ such that $$g(f(x))=8$$?
  • $$1, 2$$
  • $$-1, 2$$
  • $$-1, -2$$
  • $$1, -2$$
Find the correct expression for $$\displaystyle f\left( g\left( x \right)  \right) $$ given that $$\displaystyle f\left( x \right) =4x+1$$ and $$\displaystyle g\left( x \right) ={ x }^{ 2 }-2$$
  • $$\displaystyle -{ x }^{ 2 }+4x+1$$
  • $$\displaystyle { x }^{ 2 }+4x-1$$
  • $$\displaystyle 4{ x }^{ 2 }-7$$
  • $$\displaystyle 4{ x }^{ 2 }-1$$
  • $$\displaystyle 16{ x }^{ 2 }+8x-1$$
If $$a,b\in A, a*b\in A$$ then
  • $$*$$ is a unary operation in $$A$$
  • $$a * b = b * a$$
  • $$*$$ is a binary operation in $$A$$
  • $$a * b \neq b * a$$
If $$f(x) = \sqrt {x^{2} - 3x + 6}$$ and $$g(x) = \dfrac {156}{x +17}$$, find the value of the composite function $$g(f(4))$$.
  • $$5.8$$
  • $$7.4$$
  • $$7.7$$
  • $$8.2$$
  • $$10.3$$
Squaring a given number is a
  • relation in some set
  • relation
  • unary operation
  • binary operation
If $$*$$ is a binary operation in $$A$$ then
  • $$A$$ is closed under $$*$$
  • $$A$$ is not closed under $$*$$
  • $$A$$ is not closed under $$+$$
  • $$A$$ is closed under $$-$$
$$+$$ is
  • binary operation on $$R$$
  • not a binary operation on $$R$$
  • a binary operation in $$Q^c$$
  • not a binary operation in $$ E$$
$$*$$ is said to be commutative in $$A$$ for all $$a,b\in A$$
  • $$a + b = b + a$$
  • $$a * b = b * a$$
  • $$a - b = b - a$$
  • $$a * b \neq b * a$$
If $$f: R \rightarrow R$$ and $$g: R \rightarrow R$$ are defined by $$f(x) =3x -4$$, and  $$g(x)=2 + 3x$$, find $$(g^{-1}\, of^{-1})(5)$$.
  • $$1$$
  • $$\dfrac {1}{2}$$
  • $$\dfrac {1}{3}$$
  • $$\dfrac {1}{5}$$
For what value of x is $$fog = gof$$ if $$f(x)=x - 2$$ and $$g(x)=x^3+3$$?
  • $$\dfrac{-2}{3}$$
  • $$-1$$
  • $$\dfrac{3}{2}$$
  • $$\dfrac{-3}{2}$$
Find number of all such functions $$y = f(x)$$ which are one-one?
  • $$0$$
  • $$3^{5}$$
  • $$^{5}P_{3}$$
  • $$5^{3}$$
The inverse of the function $$y=\cfrac { { 2 }^{ x } }{ 1+{ 2 }^{ x } } $$ is
  • $$x=\log _{ 2 }{ \cfrac { 1 }{ 1-{ 2 }^{ y } } } $$
  • $$x=\log _{ 2 }{ \left( 1-\cfrac { 1 }{ y } \right) } $$
  • $$x=\log _{ 2 }{ \left( \cfrac { 1 }{ 1-y } \right) } $$
  • $$x=\log _{ 2 }{ \left( \cfrac { y }{ 1-y } \right) } $$
If $$f : R - \left \{\dfrac {3}{5}\right \}\rightarrow R - \left \{\dfrac {3}{5}\right \}; f(x) = \dfrac {3x + 1}{5x - 3}$$, then ___________.
  • $$f^{-1} (x) = 2f(x)$$
  • $$f^{-1} (x) = f(x)$$
  • $$f^{-1} (x) = -f(x)$$
  • $$f^{-1} (x)$$ does not exists
Suppose that $$g\left( x \right) =1+\sqrt { x }$$ and $$f\left( g\left( x \right)  \right) =3+2\sqrt { x } +x$$, then $$f\left( x \right)$$ is
  • $$1+2{ x }^{ 2 }$$
  • $$2+{ x }^{ 2 }$$
  • $$1+x$$
  • $$2+x$$
The number of real linear functions $$f(x)$$ satisfying $$f\left\{ f(x) \right\} =x+f(x)$$
  • $$0$$
  • $$4$$
  • $$5$$
  • $$2$$
Let A = {0, 1} and N the set of all natural numbers. Then the mapping $$f : N \rightarrow A$$ defined by
$$f(2n - 1) = 0, f (2n) = 1 \forall n \epsilon N$$
is many-one onto.
  • True
  • False
If $$D$$ be subset of the set of all rational numbers which can be expressed as terminating decimals, then $$D$$ is closed under the binary operations of:
  • addition, subtraction and division
  • addition, multiplication and division
  • addition, subtraction and multiplication
  • subtraction, multiplication and division
If $$a\ast b={ a }^{ 3 }+{ b }^{ 3 }$$ on $$z$$, then $$\left( 1\ast 2 \right) \ast 0=........$$
  • $$0$$
  • $$729$$
  • $$81$$
  • $$27$$
State True or False.
Let $$f : R \rightarrow R$$ be defined by $$f (x) = cos (5x + 2)$$. Then $$f$$ is invertible. 
  • True
  • False
If a language of natural numbers has a binary regularly of $$0$$ and $$1$$, then which one of the following strings represents the natural number $$7$$?
  • $$1$$
  • $$101$$
  • $$110$$
  • $$111$$
The number of binary operations on $$\left\{ 1,2,3,4 \right\} $$ is ______.
  • $${ 4 }^{ 2 }$$
  • $${ 4 }^{ 8 }$$
  • $${ 4 }^{ 3 }$$
  • $${ 4 }^{ 16 }$$
If $$ f: R->R$$ is defined by $$f(x) = |x|$$, then
  • $$f^{-1}_{}(x) = -x$$
  • $$f^{-1}_{}(x) = \dfrac{1}{|x|}$$
  • The function $$f^{-1}_{}(x)$$ does not exist
  • $$f^{-1}_{}(x) = \dfrac{1}{x}$$
If $$a \times b =2 a - 3b + ab$$, then $$3 \times 5+5\times 3$$ is equal to
  • $$22$$
  • $$24$$
  • $$26$$
  • $$28$$
Let $$R$$ be the relation on $$Z$$ defined by $$R = \{(a, b): a, b \in z, a - b$$ is an integer$$\}$$. Find the domain and Range of $$R$$.
  • $$z, z$$
  • $$z^+, z$$
  • $$z, z^-$$
  • None of these
If $$x \times y = x^{2}+y^{2}-xy$$ then the value of $$9 \times 11$$ is :
  • $$93$$
  • $$103$$
  • $$113$$
  • $$121$$
Let $$f(x)={x}^{3}-6{x}^{2}+15x+3$$. Then, 
  • $$f(x)> 0$$ for all $$x\in R$$
  • $$f(x)> f(x+1)$$ for all $$x\in R$$
  • $$f(x)$$ is invertible
  • $$f(x)< 0$$ for all $$x\in R$$
The number of binary operation on {1, 2, 3... n} is..
  • $$2^n$$
  • $$n^2$$
  • $$n^3$$
  • $$n^{2n}$$
Read the following information and answer the three items that follow :
Let $$f(x) = x^2 + 2x - 5 $$ and $$g(x) = 5x + 30$$
Consider the following statements:
$$f[g(x)]$$ is a polynomial of degree 3.
$$g[g(x)]$$ is a polynomial of degree 2.
Which of the above statements is/are correct ?
  • 1 only
  • 2 only
  • Both 1 and 2
  • Neither 1 nor 2
Let $$f(x)=\cfrac { 1 }{ 1-x } $$. Then $$\left\{ f\circ \left( f\circ f \right)  \right\} (x)$$
  • $$x$$ for all $$x\in R$$
  • $$x$$ for all $$x\in R-\left\{ 1 \right\} $$
  • $$x$$ for all $$x\in R-\left\{ 0,1 \right\} $$
  • none of these
Read the following information and answer the three items that follow :
Let $$f(x) = x^2 + 2x - 5 $$ and $$g(x) = 5x + 30$$
What are the roots of the equation $$g[f(x)] = 0$$ ?
  • $$1, -1$$
  • $$-1, -1$$
  • $$1, 1$$
  • $$0, 1$$
Read the following information and answer the three items that follow :
Let $$f(x) = x^2 + 2x - 5 $$ and $$g(x) = 5x + 30$$
If $$h(x) = 5f(x) - xg (x)$$, then what is the derivative of $$h(x)$$ ?
  • $$-40$$
  • $$-20$$
  • $$-10$$
  • $$0$$
The number of one-one functions that can be defined from $$A=\{4,8,12,16\}$$ to $$B$$ is $$5040,$$ then $$n(B)=$$
  • $$7$$
  • $$8$$
  • $$9$$
  • $$10$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers