Processing math: 100%

CBSE Questions for Class 12 Commerce Maths Relations And Functions Quiz 2 - MCQExams.com

If n(A)=4 and n(B)=6, then the number of surjections from A to B is
  • 46
  • 64
  • 0
  • 24
The number of injections that are possible from A to itself is 720, then n(A)=
  • 5
  • 6
  • 7
  • 8
Let A={1,2,3},B={a,b,c} and If f={(1,a),(2,b),(3,c)},g={(1,b),(2,a),(3,b)},h={(1,b)(2,c),(3,a)} then
  • g and h are injections
  • f and h are injections
  • f and g injections
  • f,g and h are injections
The number of one-one functions that can be defined from A={1,2,3} to B={a,e,i,o,u} is 
  • 35
  • 53
  • 5P3
  • 5!
The number of non-surjective mappings that can be defined from A={1,4,9,16} toB={2,8,16,32,64} is
  • 1024
  • 20
  • 505
  • 625
If f:AB is a constant function which is onto then B is
  • a singleton set
  • a null set
  • an infinite set
  • a finite set
If f:AB is a bijection then f1of=
  • fof1
  • f
  • f1
  • an identity
The number of injections possible from A={1,3,5,6} to B={2,8,11} is
  • 8
  • 64
  • 212
  • 0
The number of possible surjection from A={1,2,3,...n} to B={1,2} (where n2) is 62, then n=
  • 5
  • 6
  • 7
  • 8
If f:RR,g:RR are defined by f(x)=x2,g(x)=cosx  then (gof)(x)=
  • cos2x
  • x2cosx
  • cosx2
  • cos2x2
If f:RR is defined by f(x)=2x+13  then f1(x)=
  • 3x12
  • x32
  • 2x13
  • x43
Let f(x)=Kxx+1(x1) then the value of K for which (fof)(x)=x is
  • 1
  • 1
  • 2
  • 2
f:(π2,π2)(,) defined by f(x)=1+3x is
  • one-one but not onto
  • onto but not one-one
  • neither one - one nor onto
  • bijective
If f:RR,g:RR are defined by f(x)=4x1,g(x)=x3+2, then (gof)(a+14)= 
  • 43
  • 4a31
  • a3+2
  • 64a38a21
The function f:(0,)(,) is defined by f(x)=log3x then f1(x)=
  • 3x
  • 3x
  • 3x
  • 3xx
If f:RR,f(x)=3x2 then (fof)(x)+2=
  • f(x)
  • 2f(x)
  • 3f(x)
  • f(x)
If f(x)=2x+1 and g(x)=x2+1 then (go(fof))(2)=
  • 112
  • 122
  • 12
  • 124
If f(x)=1x,g(x)=x  and (gof)(16)=
  • 2
  • 1
  • 12
  • 4
If f(x)=x,g(x)=2x2+1 and h(x)=x+1  then  (hogof)(x) is equal to
  • x2+2
  • 2x2+1
  • x2+1
  • 2(x2+1)
If f(x)=ex+ex2, then the inverse of f(x) is
  • loge(x+x2+1)
  • logex21
  • loge(x+x212)
  • loge(x+x21)
If f:(,)(,) is defined by f(x)=5x6, then f1(x)=
  • x+56
  • x56
  • x65
  • x+65
If f(x)=5x+67x+9 then f1(x)=
  • y+67y+9
  • 7y+95y+6
  • 9y67y+9
  • 9y67y+5
If f from R into R is defined by f(x)=x31, then f1{2,0,7}=
  • {1,1,2}
  • {0,1,2}
  • {±1,±2}
  • {0,±2}
If f(x)=3x1 and g(x)=5x+6 then (g1of1)(2)=
  • 10
  • 1
  • 11
  • 12
If f(x)=e5x+13  then f1(x)=
  • 13logy5
  • 13+logy5
  • 5+logy13
  • 5logy13
If f:[1,)[2,) is given by f(x)=x+1x, then f1(x)=
  • x+x242
  • x1+x2
  • xx242
  • x+x24
If f:{1,2,3,.....}{0,±1,±2,.....} is defined by  f(n)={n2 if n is even(n12) if n is odd then  f1(100) is
  • Function is not invertible.
  • 199
  • 201
  • 200
f:RR is defined by f(x)=x2+4 then f1(13)=
  • {3,3}
  • {2,2}
  • {1,1}
  • Not invertible
If f(x)=2+x3, then f1(x) is equal to
  • 3x+2
  • 3x2
  • 3x2
  • 3x+2
The solution of 8x6(mod 14) is
  • {8,6}
  • {6,14}
  • {6,13}
  • {8,14,6}
If f(x)=(1x)1/2 and g(x)=ln(x)  then  the  domain  of (gof)(x) is
  • (,2)
  • (1,1)
  • (,1]
  • (,1)
If f:R+R such that f(x)=log5x then f1(x)=
  • logx10
  • 5x
  • 3x
  • 31/x
If f(x)=x+1x1(x1) then fofofof(x)=
  • f(x)
  • 2(x+1x1)
  • x1x+1
  • x
If F(n)=(1)k1(n1),G(n)=nF(n) then (GoG)(n)= (where k is odd)
  • 1
  • n
  • 2
  • n1
If f:[1,)B  defined  by the function f(x)=x22x+6 is a surjection, then B is equals to
  • [1,)
  • [5,)
  • [6,)
  • [2,)
If f:RR+ then f(x)=(13)x, then f1(x)=
  • (13)x
  • 3x
  • log1/3x
  • logx(13)
If X={1,2,3,4,5} and Y={1,3,5,7,9}, determine which of the following sets represent a relation and also a mapping?
  • R1={(x,y):y=x+2,xY,yY}
  • R2={(1,1),(1,3),(3,5),(4,7),(5,9)}
  • R3={(1,1),(2,3),(3,5),(3,7),(5,7)}
  • R4={(1,3),(2,5),(4,7),(5,9),(3,1)}
If f(x)=x1+x2 then fofof(x)=
  • x1+3x2
  • x1x2
  • 2x1+2x2
  • x1+x2
If A ={x:x23x+2=0}, and R is a universal relation on A, then R is
  • {(1,1),(2,2)}
  • {(1,1)}
  • ϕ
  • {(1,1),(1,2)(2,1),(2,2)}
Assertion(A):  If X={x:1x1}  and  f:XX defined by f(x)=sinπx;xA is not invertible function

Reason (R): For a function f to have inverse, it should be a bijection
  • Both A and R are true and R is the correct explanation of A
  • Both A and R are true but R is not correct explanation of A
  • A is true but R is false
  • A is false but R is true
If f(x)=x1x2,g(x)=x1+x2, then (fog)(x)=       
  • x
  • x1+x2
  • 1+x2
  • 2x
If f(x)=1+x+x2+x3+ for |x|<1  then f1(x)=
  • x1x+1
  • x+1x
  • xx1
  • x1x
If the function is f:RR,g:RR are defined as f(x)=2x+3,g(x)=x2+7  and  f[g(x)]=25  then  x=    
  • f(x)
  • ±2
  • ±3
  • ±4
If f(x)=2x+2x2x2x,  then  f1(x)=
  • 12log2(x1x+1)
  • 12log2(x+1x1)
  • 12log2(x+1x2)
  • 12log2(x2x1)
If f(x)=x1x2, then (fof)(x)=
  • x1x2
  • x12x2
  • x13x2
  • x
If f:RR is defined by f(x)=x210x+21 then f1(3) is
  • {4,6}
  • {4,6}
  • {4,4,6}
  • Not Invertible
I: If f:AB is a bijection only then does f have an inverse function
II: The inverse function f:R+R+ defined by f(x)=x2 is f1(x)=x
  • only I is true
  • only II is true
  • both I and II are true
  • neither I nor II true
If f(x)=sin1{3(x6)4}1/3  then f1(x)=
  • 6+43+sin3x
  • 6+43sin3x
  • 6+43+sinx
  • 6+43sinx
Which of the following functions defined from (,) to (,) is invertible ?
  • f(x)=sin(2x+3)
  • f(x)=x2+4
  • f(x)=x3
  • f(x)=cosx
lf f(x)=sin2x+sin2(x+π3)+cosxcos(x+π3) and g(54)=1, g(1)=0 then (gof)(x)=
  • 1
  • 0
  • sinx
  • Data is insufficient
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers