Processing math: 100%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Relations And Functions Quiz 2 - MCQExams.com
CBSE
Class 12 Commerce Maths
Relations And Functions
Quiz 2
If
n
(
A
)
=
4
and
n
(
B
)
=
6
, then the number of surjections from
A
to
B
is
Report Question
0%
4
6
0%
6
4
0%
0
0%
24
Explanation
n
(
A
)
<
n
(
B
)
∴
Co-domain can never be equal to range.
∴
No of surjections is zero
The number of injections that are possible from
A
to itself is
720
,
then
n
(
A
)
=
Report Question
0%
5
0%
6
0%
7
0%
8
Explanation
first element of
A
in domain can be mapped to
any of the
n
elements of
A
in range.
2
n
d
element of
A
in domain can be mapped to any of
(
n
−
1
)
elements of
A
in range.
∴
Total no of injections possible is
n
×
(
n
−
1
)
×
(
n
−
2
)
.
.
.
×
3
×
2
×
1
=
n
!
∴
n
!
=
720
⇒
n
=
6
Let
A
=
{
1
,
2
,
3
}
,
B
=
{
a
,
b
,
c
}
and If
f
=
{
(
1
,
a
)
,
(
2
,
b
)
,
(
3
,
c
)
}
,
g
=
{
(
1
,
b
)
,
(
2
,
a
)
,
(
3
,
b
)
}
,
h
=
{
(
1
,
b
)
(
2
,
c
)
,
(
3
,
a
)
}
then
Report Question
0%
g
and
h
are injections
0%
f
and
h
are injections
0%
f
and
g
injections
0%
f
,
g
and
h
are injections
Explanation
g
(
1
)
=
g
(
3
)
=
b
⇒
g is not one-one.
domain of
f
=
domain of
h
=
A
.
range of
f
=
range of
h
=
B
n
(
A
)
=
n
(
B
)
=
3
∴
f
and
h
are injections.
The number of one-one functions that can be defined from
A
=
{
1
,
2
,
3
}
to
B
=
{
a
,
e
,
i
,
o
,
u
}
is
Report Question
0%
3
5
0%
5
3
0%
5
P
3
0%
5
!
Explanation
You can correlate this to permutation and combination problems.
We have to arrange 3 people on 5 places.
So total no of permutations
=
5
P
3
The number of non-surjective mappings that can be defined from
A
=
{
1
,
4
,
9
,
16
}
to
B
=
{
2
,
8
,
16
,
32
,
64
}
is
Report Question
0%
1024
0%
20
0%
505
0%
625
Explanation
Here
n
(
B
)
>
n
(
A
)
, no function can be a surjective.
No of functions
=
No of non-surjectives
Any elements of
A
can be mapped to any of
5
elements in
B
So non surjective mapping from
A
to
B
=
5
×
5
×
5
×
5
=
625
If
f
:
A
→
B
is a constant function which is onto then
B
is
Report Question
0%
a singleton set
0%
a null set
0%
an infinite set
0%
a finite set
Explanation
f
(
x
)
is a constant fucntion
⇒
Range of
f
(
x
)
is a singleton set.
For
f
to be an onto function, Co domain
B
should be equal to Range.
∴
B
is a singleton set.
If
f
:
A
→
B
is a bijection then
f
−
1
o
f
=
Report Question
0%
f
o
f
−
1
0%
f
0%
f
−
1
0%
an identity
Explanation
Since
f
is bijective, its inverse will also be bijective.
f
(
x
)
=
y
x
=
f
−
1
(
y
)
f
(
x
)
=
f
−
1
(
y
)
y
=
f
(
f
)
−
1
(
y
)
=
f
(
x
)
=
y
Hence, it is an identity.
The number of injections possible from
A
=
{
1
,
3
,
5
,
6
}
to
B
=
{
2
,
8
,
11
}
is
Report Question
0%
8
0%
64
0%
2
12
0%
0
Explanation
co-domain
n
(
B
)
<
domain
n
(
A
)
There can't be any one-one function from
A
to
B
.
The number of possible surjection from
A
=
{
1
,
2
,
3
,
.
.
.
n
}
to
B
=
{
1
,
2
}
(where
n
≥
2
)
is
62
, then
n
=
Report Question
0%
5
0%
6
0%
7
0%
8
Explanation
Each element in
A
can be mapped onto any of two elements of
B
∴
Total possible functions are
2
n
For the
f
n
′
s
to be surjections , they shouldn't be mapped alone to any of the two elements.
∴
Total no of surjections
=
2
n
−
2
2
n
−
2
=
62
⇒
n
=
6
If
f
:
R
→
R
,
g
:
R
→
R
are defined by
f
(
x
)
=
x
2
,
g
(
x
)
=
cos
x
then
(
g
o
f
)
(
x
)
=
Report Question
0%
cos
2
x
0%
x
2
cos
x
0%
cos
x
2
0%
cos
2
x
2
Explanation
g
o
f
(
x
)
=
g
(
f
(
x
)
)
=
g
(
x
2
)
=
cos
x
2
If
f
:
R
→
R
is defined by
f
(
x
)
=
2
x
+
1
3
then
f
−
1
(
x
)
=
Report Question
0%
3
x
−
1
2
0%
x
−
3
2
0%
2
x
−
1
3
0%
x
−
4
3
Explanation
f
(
x
)
=
2
x
+
1
3
Let
f
(
x
)
=
y
=
2
x
+
1
3
⇒
2
x
+
1
=
3
y
2
x
=
3
y
−
1
x
=
3
y
−
1
2
∴
f
(
x
)
=
y
⇒
f
−
1
(
y
)
=
x
⇒
f
−
1
(
y
)
=
3
y
−
1
2
⇒
f
−
1
(
x
)
=
3
x
−
1
2
Let
f
(
x
)
=
K
x
x
+
1
(
x
≠
−
1
)
then the value of
K
for which
(
f
o
f
)
(
x
)
=
x
is
Report Question
0%
1
0%
−
1
0%
2
0%
√
2
Explanation
f
(
f
(
x
)
)
=
f
(
k
x
x
+
1
)
=
k
(
k
x
x
+
1
)
k
x
x
+
1
=
1
=
k
2
x
(
k
+
1
)
x
+
1
∴
for
f
(
f
(
x
)
)
=
x
⇒
k
+
1
=
0
k
2
=
1
∴
k
=
−
1
f
:
(
−
π
2
,
π
2
)
→
(
−
∞
,
∞
)
defined by
f
(
x
)
=
1
+
3
x
is
Report Question
0%
one-one but not onto
0%
onto but not one-one
0%
neither one - one nor onto
0%
bijective
Explanation
f
(
x
1
)
=
f
(
x
2
)
⇒
1
+
3
x
1
=
1
+
3
x
x
1
=
x
2
∴
f
(
x
1
)
=
f
(
x
2
)
⇒
x
1
=
x
2
∴
f is one-one.
f
lies b/w
(
1
−
3
π
2
,
1
+
3
π
2
)
∴
co-domain
(
−
∞
,
∞
)
is not equal to range
(
1
−
3
π
2
,
1
+
3
π
2
)
⇒
f is not onto.
∴
f is one-one but not onto.
If
f
:
R
→
R
,
g
:
R
→
R
are defined by
f
(
x
)
=
4
x
−
1
,
g
(
x
)
=
x
3
+
2
,
then
(
g
o
f
)
(
a
+
1
4
)
=
Report Question
0%
43
0%
4
a
3
−
1
0%
a
3
+
2
0%
64
a
3
−
8
a
2
−
1
Explanation
g
(
f
(
a
+
1
4
)
)
=
g
(
4
(
a
+
1
4
)
−
1
)
=
g
(
a
)
=
a
3
+
2
The function
f
:
(
0
,
∞
)
→
(
−
∞
,
∞
)
is defined by
f
(
x
)
=
log
3
x
then
f
−
1
(
x
)
=
Report Question
0%
3
x
0%
3
−
x
0%
−
3
x
0%
−
3
x
−
x
Explanation
f
(
x
)
=
log
3
x
f
−
1
:
(
−
∞
,
∞
)
→
(
0
,
∞
)
Let
log
3
x
=
y
=
f
(
x
)
⇒
x
=
3
y
f
(
x
)
=
y
⇒
f
−
1
(
y
)
=
x
=
3
y
∴
f
−
1
(
x
)
=
3
x
If
f
:
R
→
R
,
f
(
x
)
=
3
x
−
2
then
(
f
o
f
)
(
x
)
+
2
=
Report Question
0%
f
(
x
)
0%
2
f
(
x
)
0%
3
f
(
x
)
0%
−
f
(
x
)
Explanation
f
o
f
(
x
)
=
f
(
f
(
x
)
)
=
f
(
3
x
−
2
)
=
3
(
3
x
−
2
)
−
2
=
9
x
−
8
f
o
f
(
x
)
+
2
=
9
x
−
6
=
3
(
3
x
−
2
)
=
3
f
(
x
)
If
f
(
x
)
=
2
x
+
1
and
g
(
x
)
=
x
2
+
1
then
(
g
o
(
f
o
f
)
)
(
2
)
=
Report Question
0%
112
0%
122
0%
12
0%
124
Explanation
(
g
o
(
f
o
f
)
)
(
x
)
=
g
(
f
(
f
(
x
)
)
)
=
g
(
f
(
2
x
+
1
)
)
=
g
(
2
(
2
x
+
1
)
+
1
)
=
g
(
4
x
+
3
)
=
(
4
x
+
3
)
2
+
1
(
g
o
(
f
o
f
)
)
(
2
)
=
(
11
)
2
+
1
=
122
If
f
(
x
)
=
1
x
,
g
(
x
)
=
√
x
and
(
g
o
√
f
)
(
16
)
=
Report Question
0%
2
0%
1
0%
1
2
0%
4
Explanation
√
f
(
x
)
=
1
√
x
g
(
√
f
(
x
)
)
=
g
(
1
√
x
)
=
1
√
√
x
=
1
x
1
4
(
g
o
√
f
)
(
16
)
=
1
(
16
)
1
4
=
1
2
If
f
(
x
)
=
x
,
g
(
x
)
=
2
x
2
+
1
and
h
(
x
)
=
x
+
1
then
(
h
o
g
o
f
)
(
x
)
is equal to
Report Question
0%
x
2
+
2
0%
2
x
2
+
1
0%
x
2
+
1
0%
2
(
x
2
+
1
)
Explanation
Given
f
(
x
)
=
x
,
g
(
x
)
=
2
x
2
+
1
and
h
(
x
)
=
x
+
1
h
o
g
o
f
(
x
)
=
h
(
g
(
f
(
x
)
)
)
=
h
(
g
(
x
)
)
…
…
[
∵
f
(
x
)
=
x
]
=
h
(
2
x
2
+
1
)
…
…
[
∵
g
(
x
)
=
2
x
2
+
1
]
=
2
x
2
+
1
+
1
=
2
x
2
+
2
=
2
(
x
2
+
1
)
∴
h
o
g
o
f
(
x
)
=
2
(
x
2
+
1
)
If
f
(
x
)
=
e
x
+
e
−
x
2
, then the inverse of
f
(
x
)
is
Report Question
0%
log
e
(
x
+
√
x
2
+
1
)
0%
log
e
√
x
2
−
1
0%
log
e
(
x
+
√
x
2
−
1
2
)
0%
log
e
(
x
+
√
x
2
−
1
)
Explanation
Let
f
(
x
)
=
e
x
+
e
−
x
2
=
y
∴
x
=
f
−
1
(
y
)
e
x
+
e
−
x
=
2
y
e
2
x
−
2
y
e
x
+
1
=
0
⇒
e
x
=
2
y
±
√
4
y
2
−
4
2
e
x
=
y
±
√
y
2
−
1
1
Range of
f
is
(
−
∞
,
∞
)
⇒
e
x
=
y
+
√
y
2
−
1
1
As if we take
e
x
=
y
−
√
y
2
−
1
1
, which is always small
∴
x
=
log
e
(
y
+
√
y
2
−
1
1
)
∴
f
−
1
(
x
)
=
log
e
(
x
+
√
x
2
−
1
1
)
If
f
:
(
−
∞
,
∞
)
→
(
−
∞
,
∞
)
is defined by
f
(
x
)
=
5
x
−
6
, then
f
−
1
(
x
)
=
Report Question
0%
x
+
5
6
0%
x
−
5
6
0%
x
−
6
5
0%
x
+
6
5
Explanation
f
(
x
)
=
5
x
−
6
=
y
⇒
5
x
=
y
+
6
x
=
y
+
6
5
∴
f
(
x
)
=
y
⇒
x
=
f
−
1
(
y
)
∴
f
−
1
(
y
)
=
y
+
6
5
If
f
(
x
)
=
5
x
+
6
7
x
+
9
then
f
−
1
(
x
)
=
Report Question
0%
y
+
6
7
y
+
9
0%
7
y
+
9
5
y
+
6
0%
9
y
−
6
−
7
y
+
9
0%
9
y
−
6
−
7
y
+
5
Explanation
Let
f
(
x
)
=
y
=
5
x
+
6
7
x
+
9
7
x
y
+
9
y
=
5
x
+
6
⇒
x
(
7
y
−
5
)
=
6
−
9
y
x
=
9
y
−
6
−
7
y
+
5
x
=
f
−
1
(
y
)
=
9
y
−
6
−
7
y
+
5
If
f
from
R
into
R
is defined by
f
(
x
)
=
x
3
−
1
, then
f
−
1
{
−
2
,
0
,
7
}
=
Report Question
0%
{
−
1
,
1
,
2
}
0%
{
0
,
1
,
2
}
0%
{
±
1
,
±
2
}
0%
{
0
,
±
2
}
Explanation
f
is invertible throughout
R
∴
f
(
x
)
=
x
3
−
1
=
y
⇒
x
=
3
√
y
+
1
=
f
−
1
(
y
)
∴
f
−
1
(
−
2
)
=
−
1
f
−
1
(
0
)
=
1
f
−
1
(
7
)
=
2
∴
f
−
1
{
−
2
,
0
,
7
}
=
{
−
1
,
1
,
2
}
If
f
(
x
)
=
3
x
−
1
and
g
(
x
)
=
5
x
+
6
then
(
g
−
1
o
f
−
1
)
(
2
)
=
Report Question
0%
10
0%
−
1
0%
11
0%
12
Explanation
f
(
x
)
=
3
x
−
1
=
y
⇒
x
=
y
+
1
3
∴
f
−
1
(
y
)
=
y
+
1
3
⇒
f
−
1
(
x
)
=
x
+
1
3
g
(
x
)
=
5
x
+
6
=
z
⇒
x
=
z
−
6
5
g
−
1
(
z
)
=
z
−
6
5
⇒
g
−
1
(
x
)
=
x
−
6
5
g
−
1
(
f
−
1
(
x
)
)
=
g
−
1
(
x
+
1
3
)
=
x
+
1
3
−
6
5
=
x
−
17
15
∴
g
−
1
(
f
−
1
(
2
)
)
=
2
−
17
15
=
−
1
If
f
(
x
)
=
e
5
x
+
13
then
f
−
1
(
x
)
=
Report Question
0%
13
−
log
y
5
0%
−
13
+
log
y
5
0%
5
+
log
y
13
0%
5
−
log
y
13
Explanation
Let
f
(
x
)
=
e
5
x
+
13
=
y
f
(
x
)
=
y
⇒
x
=
f
−
1
(
y
)
5
x
+
13
=
ln
y
5
x
=
−
13
+
log
y
x
=
−
13
+
log
y
5
∴
f
−
1
(
y
)
=
−
13
+
log
y
5
If
f
:
[
1
,
∞
)
→
[
2
,
∞
)
is given by
f
(
x
)
=
x
+
1
x
, then
f
−
1
(
x
)
=
Report Question
0%
x
+
√
x
2
−
4
2
0%
x
1
+
x
2
0%
x
−
√
x
2
−
4
2
0%
x
+
√
x
2
−
4
Explanation
Let
f
(
x
)
=
x
+
1
x
=
y
⇒
x
=
f
−
1
(
y
)
&
x
2
−
y
x
+
1
=
0
Solving
x
2
−
y
x
+
1
, we get
x
2
−
y
x
+
1
=
0
x
=
y
±
√
y
2
−
4
2
∴
f
−
1
=
x
+
√
x
2
−
4
2
∵
f
is defined from
(
1
,
∞
)
→
(
2
,
∞
)
negative part is discarded.
If
f
:
{
1
,
2
,
3
,
.
.
.
.
.
}
→
{
0
,
±
1
,
±
2
,
.
.
.
.
.
}
is defined by
f
(
n
)
=
{
n
2
if
n
i
s
e
v
e
n
−
(
n
−
1
2
)
if
n
i
s
o
d
d
then
f
−
1
(
−
100
)
is
Report Question
0%
Function is not invertible.
0%
199
0%
201
0%
200
Explanation
f
(
n
)
is positive if
n
is even & negative if
n
is odd.
∴
f
−
1
(
−
100
)
=
−
2
x
+
1
=
−
2
(
−
100
)
+
1
=
200
+
1
=
201
f
:
R
→
R
is defined by
f
(
x
)
=
x
2
+
4
then
f
−
1
(
13
)
=
Report Question
0%
{
−
3
,
3
}
0%
{
−
2
,
2
}
0%
{
−
1
,
1
}
0%
Not invertible
Explanation
f
(
x
)
=
x
2
+
4
=
y
⇒
x
2
=
y
−
4
x
=
±
√
y
−
4
∴
f
−
1
(
13
)
=
±
√
13
−
4
=
±
3
f
(
3
)
=
13
&
f
(
−
3
)
=
13
Thus image
13
has two pre-images i.e,
3
and
−
3
∴
f
is not invertible
If
f
(
x
)
=
2
+
x
3
, then
f
−
1
(
x
)
is equal to
Report Question
0%
3
√
x
+
2
0%
3
√
x
−
2
0%
3
√
x
−
2
0%
3
√
x
+
2
Explanation
Let
f
(
x
)
=
y
⇒
2
+
x
3
=
y
⇒
x
3
=
y
−
2
⇒
x
=
(
y
−
2
)
1
/
3
∴
f
−
1
(
y
)
=
x
=
(
y
−
2
)
1
/
3
∴
f
−
1
(
x
)
=
(
x
−
2
)
1
/
3
The solution of
8
x
≡
6
(
m
o
d
14
)
is
Report Question
0%
{
8
,
6
}
0%
{
6
,
14
}
0%
{
6
,
13
}
0%
{
8
,
14
,
6
}
Explanation
Since,
8
x
≡
6
(
m
o
d
14
)
i.e.,
8
x
−
6
=
14
k
for
k
∈
I
.
⇒
8
x
=
14
k
+
6
⇒
4
x
=
7
k
+
3
The values
6
and
13
satisfy this equation (when
k
=
3
and
k
=
7
),
while
8
,
14
and
16
do not.
If
f
(
x
)
=
(
1
−
x
)
1
/
2
and
g
(
x
)
=
ln
(
x
)
then the domain of
(
g
o
f
)
(
x
)
is
Report Question
0%
(
−
∞
,
2
)
0%
(
−
1
,
1
)
0%
(
−
∞
,
1
]
0%
(
−
∞
,
1
)
Explanation
Given
f
(
x
)
=
(
1
−
x
)
1
2
and
g
(
x
)
=
l
n
(
x
)
g
o
f
(
x
)
=
g
(
f
(
x
)
)
=
ln
(
1
−
x
)
1
/
2
=
1
2
ln
(
1
−
x
)
∴
For the composite function to be defined
1
−
x
>
0
x
<
1
∴
Domain is
(
−
∞
,
1
)
If
f
:
R
+
→
R
such that
f
(
x
)
=
log
5
x
then
f
−
1
(
x
)
=
Report Question
0%
log
x
10
0%
5
x
0%
3
−
x
0%
3
1
/
x
Explanation
f
(
x
)
=
y
⇒
log
5
x
=
y
⇒
log
x
log
5
=
y
⇒
log
x
=
y
log
5
⇒
e
log
x
=
e
y
log
5
⇒
e
log
x
=
e
log
5
y
[
∵
a
log
x
=
log
x
a
]
⇒
x
=
5
y
=
f
−
1
(
y
)
∴
f
−
1
(
x
)
=
5
x
If
f
(
x
)
=
x
+
1
x
−
1
(
x
≠
1
)
then
f
o
f
o
f
o
f
(
x
)
=
Report Question
0%
f
(
x
)
0%
2
(
x
+
1
x
−
1
)
0%
x
−
1
x
+
1
0%
x
Explanation
f
o
f
o
f
o
f
(
x
)
=
f
o
f
o
f
(
x
+
1
x
−
1
)
=
f
o
f
(
x
+
1
x
−
1
+
1
x
+
1
x
−
1
−
1
)
=
f
o
f
(
2
x
2
)
=
f
o
f
(
x
)
=
f
(
x
+
1
x
−
1
)
=
x
If
F
(
n
)
=
(
−
1
)
k
−
1
(
n
−
1
)
,
G
(
n
)
=
n
−
F
(
n
)
then
(
G
o
G
)
(
n
)
=
(where
k
is odd)
Report Question
0%
1
0%
n
0%
2
0%
n
−
1
Explanation
G
(
n
)
=
n
−
(
−
1
)
k
−
1
(
n
−
1
)
G
o
G
(
n
)
=
G
(
n
−
(
−
1
)
k
−
1
(
n
−
1
)
)
=
n
−
(
−
1
)
k
−
1
(
n
−
1
)
−
(
−
1
)
k
−
1
(
(
n
−
1
)
−
(
−
1
)
k
−
1
(
n
−
1
)
)
=
n
−
(
n
−
1
)
=
1
If
f
:
[
1
,
∞
)
→
B
defined by the function
f
(
x
)
=
x
2
−
2
x
+
6
is a surjection, then
B
is equals to
Report Question
0%
[
1
,
∞
)
0%
[
5
,
∞
)
0%
[
6
,
∞
)
0%
[
2
,
∞
)
Explanation
f
(
x
)
=
x
2
−
2
x
+
6
is a surjection.
So the range of
f
(
x
)
will be equal to its codomain.
f
(
x
)
=
x
2
−
2
x
+
6
f
1
(
x
)
=
2
x
−
2
=
2
(
x
−
1
)
f
(
x
)
will be increasing when
x
⩾
1
.
∴
f
(
1
)
=
1
−
2
+
6
=
5
∴
B
=
[
5
,
∞
)
If
f
:
R
→
R
+
then
f
(
x
)
=
(
1
3
)
x
, then
f
−
1
(
x
)
=
Report Question
0%
(
1
3
)
−
x
0%
3
x
0%
log
1
/
3
x
0%
log
x
(
1
3
)
Explanation
Let
f
(
x
)
=
(
1
3
)
x
=
y
Taking logarithm on both sides,
x
log
1
3
=
log
y
⇒
x
=
log
y
log
1
3
⇒
x
=
log
1
/
3
y
[
∵
log
b
log
a
=
log
a
b
]
∴
f
−
1
(
x
)
=
log
1
/
3
x
If
X
=
{
1
,
2
,
3
,
4
,
5
}
and
Y
=
{
1
,
3
,
5
,
7
,
9
}
, determine which of the following sets represent a relation and also a mapping?
Report Question
0%
R
1
=
{
(
x
,
y
)
:
y
=
x
+
2
,
x
∈
Y
,
y
∈
Y
}
0%
R
2
=
{
(
1
,
1
)
,
(
1
,
3
)
,
(
3
,
5
)
,
(
4
,
7
)
,
(
5
,
9
)
}
0%
R
3
=
{
(
1
,
1
)
,
(
2
,
3
)
,
(
3
,
5
)
,
(
3
,
7
)
,
(
5
,
7
)
}
0%
R
4
=
{
(
1
,
3
)
,
(
2
,
5
)
,
(
4
,
7
)
,
(
5
,
9
)
,
(
3
,
1
)
}
Explanation
Here we will check all options one by one:
Option A:
R
1
=
{
(
x
,
y
)
:
y
=
x
+
2
,
x
∈
X
,
y
∈
Y
}
⟹
R
1
=
{
(
1
,
3
)
,
(
2
,
4
)
,
(
3
,
5
)
,
(
4
,
6
)
,
(
5
,
7
)
}
Since
4
amd
6
are the images of
2
and
4
respectively but
4
and
6
do not belong to
Y
∴
(
2
,
4
)
,
(
4
,
6
)
∉
X
×
Y
Hence
R
1
is not a relation as well as not a mapping.
Option B:
R
2
: It is a relation but not a mapping because the element
1
has two different images.
Option C:
R
2
: It is a relation but not a mapping because the element
3
has two different images.
Option D:
R
4
: It is both a relation and a mapping because every element in
X
is mapped to the elements in
Y
. Also, every element of
X
has a one and only one image in
Y
and every element in
Y
has its pre-image in
X
. Hence, it is also one-one and onto mapping and hence it is a bijection.
If
f
(
x
)
=
x
√
1
+
x
2
then
f
o
f
o
f
(
x
)
=
Report Question
0%
x
√
1
+
3
x
2
0%
x
√
1
−
x
2
0%
2
x
√
1
+
2
x
2
0%
x
√
1
+
x
2
Explanation
f
o
f
o
f
(
x
)
=
f
o
f
(
x
√
1
+
x
2
)
=
f
(
x
√
1
+
x
2
√
1
+
x
2
1
+
x
2
)
=
f
(
x
√
1
+
2
x
2
)
=
(
x
√
1
+
2
x
2
√
1
+
x
2
1
+
2
x
2
)
=
x
√
1
+
3
x
2
If A
=
{
x
:
x
2
−
3
x
+
2
=
0
}, and
R
is a universal relation on
A
, then
R
is
Report Question
0%
{
(
1
,
1
)
,
(
2
,
2
)
}
0%
{
(
1
,
1
)
}
0%
ϕ
0%
{
(
1
,
1
)
,
(
1
,
2
)
(
2
,
1
)
,
(
2
,
2
)
}
Explanation
Consider,
x
2
−
3
x
+
2
=
0
⟹
x
2
−
2
x
−
x
+
2
=
0
⟹
(
x
−
2
)
(
x
−
1
)
=
0
⟹
x
=
1
,
2
∴
A
=
{
1
,
2
}
Also R is universal relation on set A, then every element of set A is related every other element of A
So
R
=
{
(
1
,
1
)
,
(
1
,
2
)
,
(
2
,
1
)
,
(
2
,
2
)
}
.
Assertion(A):
If
X
=
{
x
:
−
1
≤
x
≤
1
}
and
f
:
X
→
X
defined by
f
(
x
)
=
sin
π
x
;
∀
x
∈
A
is not invertible function
Reason (R):
For a function
f
to have inverse, it should be a bijection
Report Question
0%
Both A and R are true and R is the correct explanation of A
0%
Both A and R are true but R is not correct explanation of A
0%
A is true but R is false
0%
A is false but R is true
Explanation
f
(
−
π
)
=
f
(
0
)
=
f
(
π
)
=
0
∴
f
is not a bijection
∴
sin
π
x
is not invertible.
If
f
(
x
)
=
x
√
1
−
x
2
,
g
(
x
)
=
x
√
1
+
x
2
, then
(
f
o
g
)
(
x
)
=
Report Question
0%
x
0%
x
√
1
+
x
2
0%
√
1
+
x
2
0%
2
x
Explanation
f
o
g
(
x
)
=
f
(
g
(
x
)
)
=
f
(
x
√
1
+
x
2
)
=
x
√
1
+
x
2
√
1
−
x
2
1
+
x
2
=
x
If
f
(
x
)
=
1
+
x
+
x
2
+
x
3
+
…
…
for
|
x
|
<
1
then
f
−
1
(
x
)
=
Report Question
0%
x
−
1
x
+
1
0%
x
+
1
x
0%
x
x
−
1
0%
x
−
1
x
Explanation
f
(
x
)
=
1
+
x
+
x
2
+
…
…
=
1
1
−
x
Let
y
=
1
1
−
x
=
f
(
x
)
1
−
x
=
1
y
x
=
1
−
1
y
=
y
−
1
y
But
x
=
f
−
1
(
y
)
=
y
−
1
y
If the function is
f
:
R
→
R
,
g
:
R
→
R
are defined as
f
(
x
)
=
2
x
+
3
,
g
(
x
)
=
x
2
+
7
and
f
[
g
(
x
)
]
=
25
then
x
=
Report Question
0%
f
(
x
)
0%
±
2
0%
±
3
0%
±
4
Explanation
f
(
g
(
x
)
)
=
f
(
x
2
+
7
)
=
25
=
2
(
x
2
+
7
)
+
3
=
2
x
2
+
17
⇒
2
x
2
=
8
x
2
=
4
⇒
x
=
±
2
If
f
(
x
)
=
2
x
+
2
−
x
2
x
−
2
−
x
, then
f
−
1
(
x
)
=
Report Question
0%
1
2
log
2
(
x
−
1
x
+
1
)
0%
1
2
log
2
(
x
+
1
x
−
1
)
0%
1
2
log
2
(
x
+
1
x
−
2
)
0%
1
2
log
2
(
x
−
2
x
−
1
)
Explanation
Let
f
(
x
)
=
y
=
2
x
+
2
−
x
2
x
−
2
−
x
⇒
2
x
(
y
−
1
)
=
2
−
x
(
1
+
y
)
2
2
x
=
y
+
1
y
−
1
2
x
=
log
2
(
y
+
1
y
−
1
)
⇒
x
=
f
−
1
(
y
)
=
1
2
log
2
(
y
+
1
y
−
1
)
So,
f
−
1
x
=
1
2
log
2
(
x
+
1
x
−
1
)
If
f
(
x
)
=
x
√
1
−
x
2
, then
(
f
o
f
)
(
x
)
=
Report Question
0%
x
√
1
−
x
2
0%
x
√
1
−
2
x
2
0%
x
√
1
−
3
x
2
0%
x
Explanation
f
o
f
(
x
)
=
f
(
f
(
x
)
)
=
(
x
/
√
1
−
x
2
)
/
(
√
1
−
(
x
2
/
(
1
−
x
2
)
)
)
=
(
x
/
√
1
−
x
2
)
/
√
(
1
−
x
2
−
x
2
)
/
(
1
−
x
2
)
=
(
x
/
√
1
−
x
2
)
/
(
√
1
−
2
x
2
/
√
1
−
x
2
)
=
x
/
√
1
−
2
x
2
If
f
:
R
→
R
is defined by
f
(
x
)
=
x
2
−
10
x
+
21
then
f
−
1
(
−
3
)
is
Report Question
0%
{
−
4
,
6
}
0%
{
4
,
6
}
0%
{
−
4
,
4
,
6
}
0%
Not Invertible
Explanation
Let
f
−
1
(
−
3
)
=
t
⇒
f
(
t
)
=
−
3
t
2
−
10
t
+
21
=
−
3
t
2
−
10
t
+
24
=
0
t
2
−
6
t
−
4
t
+
24
=
0
t
(
t
−
6
)
−
4
(
t
−
6
)
=
0
⇒
t
=
6
,
4
=
f
−
1
(
−
3
)
I: If
f
:
A
→
B
is a bijection only then does
f
have an inverse function
II: The inverse function
f
:
R
+
→
R
+
defined by
f
(
x
)
=
x
2
is
f
−
1
(
x
)
=
√
x
Report Question
0%
only I is true
0%
only II is true
0%
both I and II are true
0%
neither I nor II true
Explanation
f
is a bijection
⇒
f
is one one and onto.
∴
there exists on inverse value for every value in co-domain.
∴
f
is invertible if and only if
f
is a bijection
f
:
R
+
→
R
+
;
f
(
x
)
=
x
2
=
y
⇒
x
=
√
y
=
f
−
1
(
y
)
If
f
(
x
)
=
sin
−
1
{
3
−
(
x
−
6
)
4
}
1
/
3
then
f
−
1
(
x
)
=
Report Question
0%
6
+
4
√
3
+
sin
3
x
0%
6
+
4
√
3
−
sin
3
x
0%
6
+
4
√
3
+
sin
x
0%
6
+
4
√
3
−
sin
x
Explanation
Let
f
(
x
)
=
y
=
sin
−
1
(
3
−
(
x
−
6
)
4
)
1
3
sin
y
=
(
3
−
(
x
−
6
)
4
)
1
3
sin
3
y
=
3
−
(
x
−
6
)
4
(
x
−
6
)
4
=
3
−
sin
3
y
x
−
6
=
(
3
−
sin
3
y
)
−
1
4
x
=
(
3
−
sin
3
y
)
1
4
+
6
x
=
f
−
1
(
y
)
=
(
3
−
sin
3
y
)
1
4
+
6.
Which of the following functions defined from
(
−
∞
,
∞
)
to
(
−
∞
,
∞
)
is invertible ?
Report Question
0%
f
(
x
)
=
sin
(
2
x
+
3
)
0%
f
(
x
)
=
x
2
+
4
0%
f
(
x
)
=
x
3
0%
f
(
x
)
=
cos
x
Explanation
f
(
x
)
=
sin
(
2
x
+
3
)
lies only from
[
−
1
,
1
]
and hence is not onto.
So,
f
(
x
)
is not bijective
∴
it is not invertible
f
(
x
)
=
x
2
+
4
is always positive and so not onto.
So,
f
(
x
)
is not bijective
∴
It is also not invertible.
f
(
x
)
=
x
3
varies from
(
−
∞
,
∞
)
as
x
varies from
(
−
∞
,
∞
)
So,
f
(
x
)
is bijective
∴
It is invertible.
f
(
x
)
=
cos
x
always lies between
[
−
1
,
1
]
and so is into function.
So,
f
(
x
)
is not bijective
Hence, not invertible.
lf
f
(
x
)
=
sin
2
x
+
sin
2
(
x
+
π
3
)
+
cos
x
cos
(
x
+
π
3
)
and
g
(
5
4
)
=
1
,
g
(
1
)
=
0
then
(
g
o
f
)
(
x
)
=
Report Question
0%
1
0%
0
0%
sin
x
0%
Data is insufficient
Explanation
f
(
x
)
=
sin
2
x
+
(
sin
x
cos
π
3
+
cos
x
sin
π
3
)
2
+
c
o
s
x
(
cos
x
cos
π
3
−
sin
x
sin
π
3
)
=
sin
2
x
+
[
sin
x
2
+
√
3
cos
x
2
]
2
+
cos
2
x
2
−
√
3
2
cos
x
sin
x
=
sin
2
x
+
sin
2
x
4
+
3
4
cos
2
x
+
√
3
2
sin
x
cos
x
+
cos
2
x
2
−
√
3
2
sin
x
cos
x
=
5
4
(
sin
2
x
+
cos
2
x
)
=
5
4
∴
[
g
o
f
]
(
x
)
=
g
[
f
(
x
)
]
=
g
(
5
4
)
=
1
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page