Processing math: 100%

CBSE Questions for Class 12 Commerce Maths Relations And Functions Quiz 9 - MCQExams.com

The graph of y = g(x) in its domain is broken at
  • 1 point
  • 2 point
  • 3 point
  • None of these
Let g(x)=f(x)1. If f(x)+f(1x)=2  x ϵ R, then g(x) is symmetrical about
  • Origin
  • The line x=12
  • The point (1,0)
  • The point (12,0)
Which of the following is not true about h1(x)?
  • It is periodic function with period π
  • Range is [0,1]
  • Domain if R
  • None of these
g(f(x)) is not defined if
  • a ϵ(10,)b ϵ(5,)
  • a ϵ(4,10)b ϵ(5,)
  • a ϵ(10,)b ϵ(0,1)
  • a ϵ(4,10)b ϵ(1,5)
Let f(x) and g(x) be differentiable for 0×<1 such that f(0)=0,g(0),f(1)=6. Let there exist a real number c in (0,1) such that f(c)=2g(c), then the value of g(1) must be 
  • 1
  • 3
  • 2.5
  • 1
For set A,B and C, let f:AB,g:BC be functions such that gof is surjective.
Then g is surjective function.
  • True
  • False
Let A be a finite set. Then, each injective function from A into itself is not surjective.
  • True
  • False
For set A,B and C, let f:AB,g:BC be functions such that gof is Injective.
Then f is injective.
  • True
  • False
If g is the inverse of function f and f(x)=11+x, then the value of g'(x) is equal to:
  • 1+x7
  • 11+[g(x)]7
  • 1+[g(x)]7
  • 7x6
Computers use
  • decimal system
  • binary system
  • base 5 system
  • base 6 system
From ]π2,π2[ which of the following is one - one onto function defined in R
  • f(x)=tanx
  • f(x)=sinx
  • f(x)=cosx
  • f(x)=ex+rx
Which of the following in one -one function defined from R to R
  • f(x)=|x|
  • f(x)=cosx
  • f(x)=ex
  • f(x)=x2
Subtraction is an operation on Z, which is 
  • commutative and associative
  • associative but not commutative
  • neither commutative and nor associative
  • commutative but not associative
Let f:[1,1][0,2] be a linear function which is onto then f(x) is/are 
  • 1x
  • 1+x
  • x1
  • x2
If n2 then the number of surjections that can be defined from {1,2,3,.......n} onto {1,2} is
  • 2n
  • nP2
  • 2n
  • 2n2
Let f:XY,f(x)=sinx+cosx+22 is invertible, then XY is/are
  • [π4,5π4][2,32]
  • [π4,3π4][2,32]
  • [π4,3π4][2,32]
  • [3π4,π4][2,32]
If f(x)=x2, 1x4 ,g(x)=sec1x, x1 then


  • Domain of gof(x) is [1,4]1
  • Domain of gof(x) is [1,4]
  • Range of gof(x) is [0,sec116]
  • Range of fog(x) is (0,π24)
If f(x)=x34x+1x>0 and g(x) is image of f(x) with respect to line y=x then
  • g(1)=2
  • g(1)=18
  • f(g(1))=12
  • g(1)=316
Consider the function f(x)=xx1. Which of the following statements are correct ?

75367.jpg
  • f has the same domain and range
  • f has its own inverse
  • f is not injective
  • f is neither odd nor even
Let f:R[0,π2) be defined by f(x)=tan1(x2+x+a). Then the set of values of 'a' for which f is onto is
  • [0,)
  • [2,1]
  • {14}
  • [14,)
Let f(x)=ax+bcx+d, then fof(x)=x, provided
  • d=a
  • d=a
  • a=b=c=d=1
  • a=b=1
Which of the following functions is/are injective map(s) ?
  • f(x)=x2+2,x(,)
  • f(x)=|x+2|,x[2,)
  • f(x)=(x4)(x5),x(,)
  • f(x)=4x2+3x54+3x5x2,x(,)
Which of the following functions is not injective ?
  • f:RR,f(x)=2x+7
  • f:[0,π][1,1],f(x)=cosx
  • f:[π2,π2]R,f(x)=2sinx+3
  • f:R[1,1],f(x)=sinx
Let f(x)=max{1+sinx,1,1cosx},x[0,2π]  and g(x)=max{1,|x1|},xR , then
  • g(f(0))=1
  • g(f(1))=1
  • f(g(1))=1
  • f(g(0))=sin1
If f(x)=3|x|x2 and g(x)=sin(x), then the domain of the definition of fg(x) is
  • {2nπ+π2}
  • (2nπ+7π6,2nπ+11π6)
  • {2nπ+7π6}
  • (2nπ+7π6,2nπ+11π6)n,mI(2nπ+π2)
Let a>1 be a real number and f(x)=logax2 for x>0. If f1 is the inverse function of f and b and c are real numbers then f1(b+c) is equal to
  • f1(b).f1(c)
  • f1(b)+f1(c)
  • 1f(b+c)
  • 1f1(b)+f1(c)
Suppose f(x)=ax+b and g(x)=bx+a, where a and b are positive integers. If  f(g(50))g(f(50))=28 then the product (ab) can have the value equal to
  • 12
  • 48
  • 180
  • 210
Which one of the following functions is not one-one?
  • f:(1,)R given by f(x)=x2+2x
  • g:(2,)R given by g(x)=ex33x+2
  • h:RR given by h(x)=2x(x1)
  • ϕ:(,0)R given by ϕ(x)=x2x2+1
If f:R[π6,π2),f(x)=sin1(x2ax2+1) is a onto function, then set of values of a is
  • {12}
  • [12,1)
  • (1,)
  • none of these
If f(x)=x+2,g(x)=2x+3, then find gof
  • 2x7
  • 7x+2
  • 2x+7
  • 7+2x
Which of the function defined below are one-one function(s)?
  • f(x)=x+1,(x1)
  • g(x)=x+1x,(x0)
  • h(x)=x2+4x5,(x>0)
  • f(x)=ex,(x0)
f(x)=x3+3x2+4x+bsinx+ccosx,xR is a one-one function, then the value of b2+c2 is
  • 1
  • 2
  • 1
  • none of these
If f(x)=2x+|x|,g(x)=13(2x|x|) and h(x)=f(g(x)), then domain of sin1(h(h(h(h.....h(x).....))))n times is
  • [1,1]
  • [1,12][12,1]
  • [1,12]
  • [12,1]
Let f:x,y,z(a,b,c) be a one-one function. It is known that only one of the following statements is true:
(i) f(x)b
(ii)f(y)=b
(iii)f(z)a
  • f={(x,a),(y,b),(z,c)}
  • f={(x,b),(y,a),(z,c)}
  • f={(x,b),(y,c),(z,c)}
  • f={(x,b),(y,c),(z,a)}
The inverse of the function y=e2xe2xe2x+e2x is
  • loge(1+2x12x)
  • 14loge(1x1+x)
  • 14loge(1+x1x)
  • an odd function
Let f(x)={x2if0<x<22x3if2x<3x+2ifx3.
Then 
  • f{f(f(32))}=f(32)
  • 1+f{f(f(52))}=f(52)
  • f{f(0)}=f(1)=1
  • none of these
The function f is one to one and the sum of all the intercepts of the graph is 5. The sum of all the intercept of the graph y=f1(x) is
  • 5
  • 15
  • 25
  • 5
Suppose f(x)=(x+1)2 for x1. If g(x) is the function whose graph is the reflection of the graph of f(x) with respect to the line y=x, then g(x) is equal to
  • x1 for x0
  • 1(x+1)2 for x>1
  • x+1 for x>1
  • x1 for x0
Let f(x)={1+|x|,x<1[x],x1 where [] denotes the greatest integer function. Then f{f(2.3)} is equal to 
  • 4
  • 2
  • 3
  • 3
The inverse function of the function f(x)=exexex+ex is 
  • 12log1+x1x
  • 12log2+x2x
  • 12log1x1+x
  • none of these
If f(x)=px+q and f(f(f(x)))=8x+21, where p and q are real numbers, the p+q equals
  • 3
  • 5
  • 7
  • 11
K(x) is a function such that K(f(x))=a+b+c+d,
Where,
$$a=\begin{cases}
0 & \text{ if f(x) is even}  \\ 
-1 & \text{ if f(x) is odd} \\ 
2 & \text{ if f(x) is neither even nor odd} 
\end{cases}$$
$$b=\begin{cases}
3 & \text{ if  f(x) is periodic} \\ 
4 & \text{  if  f(x) is  aperiodic}
\end{cases}$$
$$c=\begin{cases}
5 & \text{ if  f(x) is  one one} \\ 
6 & \text{  if  f(x) is many one}
\end{cases}$$
$$d=\begin{cases}
7 & \text{ if  f(x) is onto} \\ 
8 & \text{  if  f(x) is into}
\end{cases}$$ 
h:RR,h(x)=(e2x+ex+1e2xex+1) 

On the basis of above information, answer the following questions.K(ϕ(x))
  • 15
  • 16
  • 17
  • 18
The total number of injective mappings from a set with m elements to a set with n elements, mn is 
  • mn
  • nm
  • n!(nm)!
  • n!
If f:RR and g:RR are given by f(x)=|x| and g(x)=[x] for each xR, then {xR:g(f(x))f(g(x))}=
  • Z(,0)
  • (,0)
  • Z
  • R
Let f:[π3,2π3][0,4] be a function defined by f(x)=3sinxcosx+2 then f1(x) equals
  • 2π3cos1(x22)
  • sin1(x22)+π3
  • sin1(x22)
  • sin1(x+22)+π6
Let f and g be increasing and decreasing functions respectively from (0,) to (0,) and let h(x)=f[g(x)]. If h(0)=0 then h(x)h(1) is
  • always zero
  • always negative
  • always positive
  • strictly increasing
  • None of these
If f(x)=3x+25x3 , then
  • f(f(x))=f1(x)
  • f1(x)=f(x)
  • f(f(x))=f(x)
  • f(f(x))=x2
If f(x)+f(1x)=0,f(e)=1;g(x)=f1(x) then g(x) equals
  • ex
  • x
  • x2
  • ex
If f:[1,)[2,) is given by f(x)=x+1x, then f1(x) equals
  • x+x242
  • x1+x2
  • xx242
  • 1+x24
Let f(x)=ax2+2x+12x22x+1, the value of a for which f:R[1,2] is onto , is
  • [2,5]
  • [5,2]
  • [0,5]
  • None of these.
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers