Explanation
Given,
Final velocity, v1
Change in kinetic Energy = work done by force
12mv21−12mv2=W
v1=√2Wm+v2
Hence, final velocity is √2Wm+v2
A machine rated as 150 W, changes the velocity of a 10kg mass from 4 ms^{-1} to 10 ms^{-1} in 4s. The efficiency of the machine is nearly :
It is given that,
F=x\hat{i}+2y\hat{j}
Let,\,\,dx=dx\hat{i}+dy\hat{j}
dw=\int{F.dx}
=\int{(x\hat{i}+2y\hat{j}})(dx\hat{i}+dy\hat{j})
=\int\limits_{1}^{0}{xdx}+2\int\limits_{2}^{1}{ydy}
={{\left. \dfrac{{{x}^{2}}}{2} \right|}_{1}}^{0}+{{\left. {{y}^{2}} \right|}_{2}}^{1}
=\dfrac{-1}{2}+(1-4)
=-0.5-3
=-3.5\,\,J
Given that,
Mass m=2\,kg
Distance x=\dfrac{{{t}^{2}}}{4}
Now, on differentiate
\dfrac{dx}{dt}=\dfrac{1}{2}t
Now, velocity and acceleration is
v=\dfrac{dx}{dt}=\dfrac{t}{2}
a=\dfrac{dv}{dt}=\dfrac{1}{2}
Now, the force is
F=ma
F=2\times \dfrac{1}{2}
F=1\,N
Now, the work done is
dW=F\centerdot dx
\int{dW}=\int\limits_{0}^{2}{1}\times \dfrac{t}{2}dt
W=\left[ \dfrac{{{t}^{2}}}{4} \right]_{0}^{2}
W=\left[ \dfrac{4}{4}-0 \right]
W=1\,J
Hence, the work done is 1\ J
We know that, the kinetic energy is
K.E=\dfrac{1}{2}m{{v}^{2}}....(I)
Checking all options given -
A) m=3M & v=v
K.E=\dfrac{1}{2}m{{v}^{2}}
K.E=\dfrac{1}{2}\times 3M\times {{v}^{2}}
K.E=\dfrac{3M{{v}^{2}}}{2}
B) m=3M & v=2v
K.E=\dfrac{1}{2}\times 3M\times 4{{v}^{2}}
K.E=6M{{v}^{2}}
C) m=2M & v=3v
K.E=\dfrac{1}{2}\times 2M\times 9{{v}^{2}}
K.E=9M{{v}^{2}}
D) m=M & v=4v
K.E=\dfrac{1}{2}\times M\times 16{{v}^{2}}
K.E=8M{{v}^{2}}
Hence, the largest kinetic energy is 9M{{v}^{2}} when m=2M and v=3v.
A body mass 10 kg is raised from a certain depth. By the time it is raised by 10 m, If its velocity is 2ms^{-1}, work done during this time is,
Mass of body m=10\,kg
Height from depth h=10\,m
Velocity v=2\,m/s
Now,
Work done = work done to change in P.E + work done in providing K.E to body
W=mgh+\dfrac{1}{2}m{{v}^{2}}
W=10\times 9.8\times 10+\dfrac{1}{2}\times 10\times 2\times 2
W=980+20
W=1000\,J
Hence, the work done is 1000\ J
Force, F=\left( 3t\hat{i}+5\hat{j} \right)N
Displacement, s=\left( 2{{t}^{2}}\hat{i}-5\hat{j} \right)\,m
ds=\left( 4t\hat{i}+0\hat{J} \right)\,dt
dw=F.ds
\int_{0}^{w}{dw}=\int_{0}^{2}{\left( 3t\hat{i}+5\hat{j} \right)}\left( 4t\hat{i}+0\hat{j} \right)\,dt
W=\left. 12{{t}^{2}} \right|_{0}^{2}=48\,J
Net work done is 48\,J
Force F=KV
Velocity=V
We know that,
F=Ma
Ma=KV
M\left( \dfrac{dV}{dt} \right)=KV
MdV=KVdt
Multiply by v in both side
MVdV=K{{V}^{2}}dt
On integrating both side
\int\limits_{{{v}_{1}}}^{{{v}_{2}}}{MVdV=\int\limits_{0}^{t}{K{{V}^{2}}dt}}
M\left[ \dfrac{V_{2}^{2}}{2}-\dfrac{V_{1}^{2}}{2} \right]=K{{V}^{2}}t
\dfrac{M}{2}\left[ V_{2}^{2}-V_{1}^{2} \right]=K{{V}^{2}}t
Now, the change in K.E
Now, from work energy theorem
Change in energy = work done
K.E=K{{V}^{2}}t
Hence, the work done is K{{V}^{2}}t
Velocity, \dfrac{dx}{dt}=v=k{{x}^{3/2}}
Acceleration,
a=\dfrac{dv}{dt}=\dfrac{d\left( k{{x}^{3/2}} \right)}{dt}=\dfrac{1}{2}k{{x}^{1/2}}\dfrac{dx}{dt}=\dfrac{1}{2}k{{x}^{1/2}}v
a=\dfrac{1}{2}k{{x}^{1/2}}\left( k{{x}^{3/2}} \right)=\dfrac{1}{2}{{k}^{2}}{{x}^{2}}
work\,done\,=\,force\times displacemet\,=Mass\times acceleration\times displacement
\Rightarrow dW=m.a\,.dx=m.\dfrac{1}{2}{{k}^{2}}{{x}^{2}}dx
On integrating
W=m\dfrac{1}{2}{{k}^{2}}\left( \dfrac{{{x}^{3}}}{3} \right)
Hence, Work done is proportional to {{x}^{3}}
Spring energy E=\dfrac{1}{2}k{{x}^{2}}=\dfrac{1}{2}80\times {{0.12}^{2}}=0.576\,J
From conservation of energy
Maximum Spring energy = Maximum kinetic energy of ball
E=\dfrac{1}{2}M{{V}^{2}}
V=\dfrac{2E}{M}=\dfrac{2\times 0.576}{0.015}=76.8m{{s}^{-1}}
Velocity of ball is 76.8\,m{{s}^{-1}}
Please disable the adBlock and continue. Thank you.