Explanation
Consider the given expression.
{{x}^{4}}+{{y}^{4}}={{a}^{4}}
Let the point on the curve be M\left( {{x}_{0}},{{y}_{0}} \right).
Therefore,
x_{0}^{4}+x_{0}^{4}={{a}^{4}}
Differentiate the expression given in the question with respect to x.
4{{x}^{3}}+4{{y}^{3}}\dfrac{dy}{dx}=0
\dfrac{dy}{dx}=-\dfrac{{{x}^{3}}}{{{y}^{3}}}
So, at the point M, the slope is,
\Rightarrow -\dfrac{x_{0}^{3}}{y_{0}^{3}}
Therefore, equation of the tangent is,
$$\begin{align}
y-{{y}_{0}}=-\dfrac{x_{0}^{3}}{y_{0}^{3}}\left( x-{{x}_{0}} \right)
yy_{0}^{3}-y_{0}^{4}=-x_{0}^{3}x+x_{0}^{4}
\end{align}$$
Let p and q be the x and y intercept, respectively. So, at x intercept,
-y_{0}^{4}=-x_{0}^{3}p+x_{0}^{4}
x_{0}^{3}p=x_{0}^{4}+y_{0}^{4}
p=\dfrac{x_{0}^{4}+y_{0}^{4}}{x_{0}^{3}}
p=\dfrac{{{a}^{4}}}{x_{0}^{3}}
Similarly,
q=\dfrac{{{a}^{4}}}{y_{0}^{3}}
Now, calculate the value of {{p}^{-4/3}}+{{q}^{-4/3}}.
={{\left( \dfrac{{{a}^{4}}}{x_{0}^{3}} \right)}^{-4/3}}+{{\left( \dfrac{{{a}^{4}}}{y_{0}^{3}} \right)}^{-4/3}}
={{\left( \dfrac{x_{0}^{3}}{{{a}^{4}}} \right)}^{4/3}}+{{\left( \dfrac{y_{0}^{3}}{{{a}^{4}}} \right)}^{4/3}}
=\left( \dfrac{x_{0}^{4}}{{{a}^{16/3}}} \right)+\left( \dfrac{y_{0}^{4}}{{{a}^{16/3}}} \right)
=\dfrac{x_{0}^{4}+y_{0}^{4}}{{{a}^{16/3}}}
=\dfrac{{{a}^{4}}}{{{a}^{16/3}}}
={{a}^{-4/3}}
Hence, this is the required result.
Please disable the adBlock and continue. Thank you.