Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
MCQExams
0:0:2
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Application Of Derivatives Quiz 4 - MCQExams.com
CBSE
Class 12 Commerce Maths
Application Of Derivatives
Quiz 4
Let the parabolas
y
=
x
2
+
a
x
+
b
and
y
=
x
(
c
−
x
)
touch each other at the point
(
1
,
0
)
. Then
Report Question
0%
a
=
−
3
0%
b
=
1
0%
c
=
2
0%
b
+
c
=
3
Explanation
As point
(
1
,
0
)
lies on
y
=
x
2
+
a
x
+
b
⇒
a
+
b
=
−
1
...(1)
And also lies on
y
=
x
(
c
−
x
)
⇒
c
=
1
...(2)
They touch each other, so slope of tangents drawn from
(
1
,
0
)
will be same, then
d
y
d
x
=
2
x
+
a
=
c
−
2
x
⇒
a
=
c
−
4
⇒
a
=
−
3
...(3)
Using (1) and (3) we get
−
3
+
b
=
1
⇒
b
=
2
...(4)
Now using (2) and (4) we get
b
+
c
=
2
+
1
=
3
Hence, options 'A' and 'D' are correct.
The curve
x
n
a
n
+
y
n
b
n
=
2
touches the line
x
a
+
y
b
=
2
at the point
Report Question
0%
(
b
,
a
)
0%
(
a
,
b
)
0%
(
1
,
1
)
0%
(
1
a
,
1
b
)
Explanation
Slope of curve
x
n
a
n
+
y
n
b
n
=
2
is
d
y
d
x
=
−
b
n
a
n
x
n
−
1
y
n
−
1
Slope of tangent
x
a
+
y
b
=
2
is
d
y
d
x
=
−
b
a
Equating both slopes, we get
−
b
n
a
n
x
n
−
1
y
n
−
1
=
−
b
a
Only
x
=
a
y
=
b
satisfy the above equation.
Hence, option 'B' is correct.
If the line joining the points
(
0
,
3
)
and
(
5
,
−
2
)
is the tangent to the curve
y
=
c
x
+
1
then the value of
c
is
Report Question
0%
1
0%
−
2
0%
4
0%
none of these
Explanation
Slop of line joining the points
(
0
,
3
)
a
n
d
(
5
,
2
)
is given by
3
+
2
0
−
5
=
−
1
This is equal to the slop of tangent on the curve and that is given by
d
y
d
x
=
−
c
(
x
+
1
)
2
d
y
d
x
=
−
1
⇒
c
=
(
x
+
1
)
2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
(
1
)
\
Equation of line joining the points
(
0
,
3
)
a
n
d
(
5
,
2
)
is given by
(
y
−
3
)
=
−
1
(
x
−
0
)
Solving equation of tangent and the curve for point of intersection
c
x
+
1
+
x
=
3
.............(2)
Solving (1) and (2)
x
=
1
Putting this in (2), we get c=4
A point on the ellipse
4
x
2
+
9
y
2
=
36
where the tangent is equally inclided to the axes is
Report Question
0%
(
9
√
13
,
4
√
13
)
0%
(
−
9
√
13
,
4
√
13
)
0%
(
9
√
13
,
−
4
√
13
)
0%
(
4
√
13
,
−
9
√
13
)
Explanation
Slope of tangent to the curve
4
x
2
+
9
y
2
=
36
is
1
. since it is equally inclined to the axes.
d
y
d
x
=
4
x
9
y
=
1
⇒
x
=
9
y
4
On solving obtained equation with the equation of curve, we get
y
=
±
4
√
13
Substituting value of y we get
(
x
,
y
)
=
(
9
√
13
,
4
√
13
)
,
(
−
9
√
13
,
4
√
13
)
,
(
9
√
13
,
−
4
√
13
)
Hence, options 'A', 'B' and 'C' are correct.
If error in measuring the edge of a cube is
k
% then the percentage error in estimating its volume is
Report Question
0%
k
0%
3
k
0%
k
3
0%
none of these
Explanation
Let the actual length of the cube be a.
Therefore the measured length of the cube will be
=
a
(
1
±
0.0
k
)
=
a
(
1
±
k
100
)
Considering positive error,
a
′
=
a
(
1
+
k
100
)
V
′
=
a
3
(
1
+
k
100
)
3
=
a
3
(
1
+
3
(
k
100
)
+
3
(
k
100
)
2
+
(
k
100
)
3
)
Since
k
100
<<
1
, hence we neglect the higher order terms.
Thus
V
′
=
a
3
(
1
+
3
(
k
100
)
)
Actual volume V
V
=
a
3
Therefore
V
′
−
V
=
a
3
(
1
+
3
k
100
)
−
a
3
=
a
3
(
3
k
100
)
V
′
−
V
V
=
a
3
3
k
100
a
3
=
3
k
100
=
3
k
100
V
′
−
V
V
×
100
=
3
k
Therefore percentage error in volume is
3
k
.
The angle between two tangents to the ellipse
x
2
16
+
y
2
9
=
1
at the points where the line
y
=
1
cuts the curve is
Report Question
0%
π
4
0%
tan
−
1
6
√
2
7
0%
π
2
0%
none of these
Explanation
Substituting
y
=
1
in
x
2
16
+
y
2
9
=
1
We get
x
=
±
8
√
2
3
And slope of tangents
d
y
d
x
=
9
x
16
y
=
m
1
,
m
2
=
±
3
√
2
2
Therefore
t
a
n
(
θ
)
=
m
1
−
m
2
1
+
m
1
m
2
=
|
−
6
√
2
7
|
⇒
θ
=
t
a
n
−
1
(
6
√
2
7
)
A tangent to the curve
y
=
∫
x
0
|
t
|
d
t
, which is parallel to the line y=x, cuts off an intercept from the y-axis equal to
Report Question
0%
1
0%
−
1
2
0%
1
2
0%
−
1
Explanation
Since the integral is in the first quadrant
|
t
|
=
t
Thus
∫
x
x
=
0
|
t
|
.
d
t
=
∫
x
x
=
0
t
.
d
t
=
x
2
2
Or
2
y
=
x
2
is the equation of the curve.
Now
2
y
′
=
2
x
Or
y
′
=
x
...(i)
Now the tangent is parallel to
y
=
x
Hence slope
=
y
′
=
1
Thus the x-coordinate of point of contact is 1.
Hence
y
=
1
2
.
Hence equation of the tangent will be
y
−
1
2
=
(
x
−
1
)
.
Or
x
−
y
=
1
2
Or
y
=
x
−
1
2
.
Hence intercept cut on the y axis is
−
1
2
.
Angle between the tangents to the curve
y
=
x
2
−
5
x
+
6
at the points
(
2
,
0
)
and
(
3
,
0
)
is
Report Question
0%
π
2
0%
π
3
0%
π
6
0%
π
4
Explanation
Given equation of curve
y
=
x
2
−
5
x
+
6
⇒
d
y
d
x
=
2
x
−
5
Slope of tangent to the curve at
(
2
,
0
)
is
(
d
y
d
x
)
(
2
,
0
)
=
2
(
2
)
−
5
=
−
1
=
m
1
Slope of tangent to the curve at
(
3
,
0
)
is
(
d
y
d
x
)
(
3
,
0
)
=
2
(
3
)
−
5
=
1
=
m
2
Since
m
1
m
2
=
−
1
∴
Angle between the tangents to the curve at
(
2
,
0
)
and
(
3
,
0
)
is
π
2
The number of tangents to the curve
y
=
e
|
x
|
at the point
(
0
,
1
)
is
Report Question
0%
2
0%
1
0%
4
0%
0
Explanation
For
x
>
0
,
y
=
e
x
.
d
y
d
x
=
e
x
.
Now
d
y
d
x
x
=
0
=
1
.
Hence
y
−
1
=
1
(
x
−
0
)
Or
x
−
y
+
1
=
0
is the required equation of tangent.
Similarly for
x
<
0
y
=
e
−
x
.
d
y
d
x
=
−
e
−
x
.
Now
d
y
d
x
x
=
0
=
−
1
.
Hence
y
−
1
=
−
1
(
x
−
0
)
Or
x
+
y
−
1
=
0
is the required equation of tangent.
Hence at
x
=
0
we will have 2 tangents to the curve
y
=
e
|
x
|
which are mutually perpendicular.
The curve
y
+
e
x
y
+
x
=
0
has a tangent parellel to y-axis at a point
Report Question
0%
(
−
1
,
0
)
0%
(
1
,
0
)
0%
(
1
,
1
)
0%
(
0
,
0
)
Explanation
d
y
d
x
+
e
x
y
[
x
d
y
d
x
+
y
]
+
1
=
0
Or
d
y
d
x
[
1
+
x
.
e
x
y
]
+
1
+
y
.
e
x
y
=
0
Or
d
y
d
x
=
−
(
1
+
y
.
e
x
y
)
1
+
x
.
e
x
y
Now
1
+
x
e
x
y
=
0
since the slope of the tangent is
90
0
.
Hence
x
e
x
y
=
−
1
Or
x
(
−
x
−
y
)
=
−
1
Or
x
2
+
x
y
=
1
Or
y
=
1
−
x
2
x
Or
y
=
1
x
−
x
...(i)
Considering
y
=
0
,
x
2
=
1
x
=
±
1
.
Hence we get 2 points
(
1
,
0
)
and
(
−
1
,
0
)
.
Out of these 2, only
(
−
1
,
0
)
lies on the curve.
Hence the required point is
(
−
1
,
0
)
.
The tangent to the curve
y
=
e
x
drawn at the point
(
c
,
e
c
)
intersects the line joining the points
(
c
−
1
,
e
c
−
1
)
(
c
+
1
,
e
c
+
1
)
Report Question
0%
on the left of
x
=
c
0%
on the right of
x
=
c
0%
at no point
0%
at all points
Explanation
Equation of straight line joining
A
(
c
+
1
,
e
c
+
1
)
and
B
(
c
−
1
,
e
c
−
1
)
is
y
−
e
c
+
1
=
e
c
+
1
−
e
c
−
1
2
(
x
−
c
−
1
)
(1)
Equation of tangent at
(
c
,
e
c
)
is
y
−
e
c
=
e
c
(
x
−
c
)
(2)
Subtracting (1) from (2),we get
e
c
(
e
−
1
)
=
e
c
[
(
x
−
c
)
−
1
2
(
e
−
e
−
1
)
(
x
−
c
)
+
1
2
(
e
−
e
−
1
)
]
⇒
1
2
(
e
+
e
−
1
)
−
1
=
(
x
−
c
)
[
1
−
1
2
(
e
−
e
−
1
)
]
⇒
x
−
c
=
e
+
e
−
1
−
2
2
−
e
+
e
−
1
<
0
[
∵
e
+
e
−
1
>
2
and
2
+
e
−
1
−
e
<
0
]
⇒
x
<
c
Thus the two lines meet to the left of
x
=
c
For
a
∈
[
π
,
2
π
]
and
n
∈
Z
, the critical points of
f
(
x
)
=
1
3
sin
a
tan
3
x
+
(
sin
a
−
1
)
tan
x
+
√
a
−
2
8
−
a
are
Report Question
0%
x
=
n
π
0%
x
=
2
n
π
0%
x
=
(
2
n
+
1
)
π
0%
None of these
Explanation
Given,
f
(
x
)
=
1
3
sin
a
tan
3
x
+
(
sin
a
−
1
)
tan
x
+
√
a
−
2
8
−
a
f
′
(
x
)
=
sin
a
tan
2
x
sec
2
x
+
(
sin
a
−
1
)
sec
2
x
=
(
sin
a
tan
2
x
+
sin
a
−
1
)
sec
2
x
At critical points, we must have
f
′
(
x
)
=
0
⇒
sin
a
tan
2
x
+
sin
a
−
1
=
0
(
∵
sec
2
x
≠
0
f
o
r
a
n
y
x
∈
R
)
⇒
tan
2
x
=
1
−
sin
a
sin
a
Since
a
∈
[
π
,
2
π
]
,
1
−
sin
a
sin
a
<
0
∴
tan
2
x
=
1
−
sin
a
sin
a
has no solution in
R
⇒
f
(
x
)
has no critical points
Report Question
0%
Assertion is true and Reason is true; Reason is a correct explanation for Assertion.
0%
Assertion is True, Reason is true; Reason is not a correct explanation for Assertion.
0%
Assertion is true, Reason is false
0%
Assertion is false, Reason is true
Explanation
We have
y
=
x
2
+
b
x
+
c
⇒
d
y
d
x
=
2
x
+
b
Since the curve touches the line
y
=
x
at the point
(
1
,
1
)
[
2
x
+
b
]
(
1
,
1
)
=
1
⇒
2
+
b
=
1
⇒
b
=
−
1
Also, the curve passes through the point
(
1
,
1
)
∴
1
=
1
+
b
+
c
⇒
c
=
−
b
=
1
∴
y
=
x
2
−
x
+
1
⇒
d
y
d
x
=
2
x
−
1
Now,
d
y
d
x
<
0
⇒
2
x
−
1
<
0
⇒
x
<
1
2
y
=
4
x
2
and
y
=
x
2
.
The two curves
Report Question
0%
intersect each other
0%
touch each other
0%
do not meet
0%
represent parabola
Explanation
y
=
4
x
2
and
y
=
x
2
represent two parabola concave upward and symmetric about positive y-axis. Both the curves do not intersect, however they touch each other at
x
=
0
.
y
′
=
8
x
and
y
′
=
2
x
Now
8
x
=
2
x
Or
x
=
0
Hence both curves have equal slope at
x
=
0
and are horizontal (parallel to x axis)at
x
=
0
If the normal to the curve
y
=
f
(
x
)
at the point
(
3
,
4
)
makes an angle
3
π
4
with the positive x-axis then
f
′
(
3
)
is equal to
Report Question
0%
−
1
0%
−
3
4
0%
4
3
0%
1
Explanation
Slope of normal
=
−
1
f
′
(
x
)
=
t
a
n
(
3
π
4
)
=
−
1
Hence
f
′
(
x
)
=
1
Or
d
y
d
x
=
1
Or
y
=
x
+
c
Hence
y
=
f
(
x
)
is an equation of a straight line parallel to
y
=
x
.
Hence
f
′
(
x
)
is independent of x and its value is 1.
Find the slopes of the tangents of the curve
y
=
(
x
+
1
)
(
x
−
3
)
at the points where it cuts the X-axis.
Report Question
0%
4
0%
−
4
0%
2
0%
−
2
Explanation
f
(
x
)
=
(
x
+
1
)
(
x
−
3
)
Now
f
(
x
)
=
0
⇒
x
=
−
1
,
x
=
3
Differentiating
f
(
x
)
with respect to x
d
y
d
x
=
x
+
1
+
x
−
3
=
2
x
−
2
=
2
(
x
−
1
)
Now slope of the tangent at
(
h
,
k
)
will be
d
y
d
x
h
,
k
Hence slopes of the tangent at
x
=
−
1
and
x
=
3
, will be
d
y
d
x
x
=
−
1
=
2
(
x
−
1
)
x
=
−
1
=
−
4
And
d
y
d
x
x
=
3
=
2
(
x
−
1
)
x
=
3
=
4
Find the points on the curve
y
=
x
3
, the tangents at which are inclined at an angle of
60
∘
to x-axis.
Report Question
0%
x
=
±
1
√
√
3
,
y
=
1
√
3
.
1
√
√
3
.
0%
x
=
1
√
√
3
,
y
=
1
√
3
.
1
√
√
3
.
0%
x
=
±
1
√
√
3
,
y
=
±
1
√
3
.
1
√
√
3
.
0%
x
=
−
1
√
√
3
,
y
=
±
1
√
3
.
1
√
√
3
.
Explanation
Hence slope of tangents
=
t
a
n
60
0
=
√
3
=
d
y
d
x
Hence
d
y
d
x
=
3
x
2
=
√
3
Or
x
2
=
1
√
3
Hence
x
=
±
1
√
√
3
.
Thus y
=
1
√
3
.
1
√
√
3
.
Find the points on the curve
y
=
x
/
(
1
−
x
2
)
where the tangents makes an angle of
π
/
4
with x-axis
Report Question
0%
(
√
3
,
−
√
2
3
)
,
(
−
√
2
,
√
2
3
)
0%
(
√
3
,
−
√
3
4
)
,
(
−
√
3
,
√
3
4
)
0%
(
√
3
,
−
√
3
2
)
,
(
−
√
3
,
√
3
2
)
0%
none of these
Explanation
d
y
d
x
=
t
a
n
45
0
Or
d
y
d
x
=
1
Or
(
1
−
x
2
)
−
x
(
−
2
x
)
(
1
−
x
2
)
2
=
1
Or
1
−
x
2
+
2
x
2
=
(
1
−
x
2
)
2
Or
1
+
x
2
=
1
−
2
x
2
+
x
4
Or
x
4
−
3
x
2
=
0
Or
x
2
[
x
2
−
3
]
=
0
x
=
0
or
x
=
±
√
3
Hence
y
=
√
3
1
−
3
=
−
√
3
2
y
=
−
√
3
1
−
3
=
√
3
2
Hence
(
√
3
,
−
√
3
2
)
,
(
−
√
3
,
√
3
2
)
.
Find the condition that the line
A
x
+
B
y
=
1
may be a normal to the curve
a
n
−
1
y
=
x
n
.
Report Question
0%
a
n
B
(
B
2
+
n
A
2
)
n
=
A
n
n
n
.
0%
a
n
−
1
B
(
B
2
+
n
A
2
)
n
−
1
=
A
n
n
n
.
0%
a
n
B
(
B
2
+
n
A
2
)
n
−
1
=
A
n
n
n
.
0%
a
n
−
1
B
(
B
2
−
n
A
2
)
n
−
1
=
A
n
n
n
.
Explanation
Given,
a
n
−
1
y
=
x
n
∴
d
y
d
x
=
n
x
n
−
1
a
n
−
1
=
n
x
n
−
1
a
n
−
1
⋅
1
x
=
n
y
x
.
∴
Normal is:
Y
−
y
=
−
1
d
y
/
d
x
(
X
−
x
)
=
−
x
n
y
(
X
−
x
)
∴
X
x
+
Y
n
y
=
n
y
2
+
x
2
.
Compare with
A
X
+
B
Y
=
1
∴
X
A
=
n
y
B
=
n
y
2
+
x
2
1
=
k
,
say.
∴
x
=
A
k
,
y
=
(
B
k
/
n
)
and
n
y
2
+
x
2
=
k
or
k
2
[
(
B
2
/
n
+
A
2
)
]
=
k
∴
k
=
n
B
2
+
n
A
2
..(1)
Now
a
n
−
1
y
=
x
n
.
Put for
x
and
y
.
a
n
−
1
y
⋅
B
k
n
=
A
n
k
n
⇒
a
n
−
1
B
=
n
A
n
k
n
−
1
⇒
a
n
−
1
B
=
n
A
n
⋅
(
n
B
2
+
n
A
2
)
n
−
1
,
by (1)
⇒
a
n
−
1
B
(
B
2
+
n
A
2
)
n
−
1
=
A
n
n
n
.
Above is the required condition.
If the normal to the curve
y
=
f
(
x
)
at the point
(
3
,
4
)
makes an angle
3
π
/
4
with the positive x-axis, then
f
′
(
3
)
=
Report Question
0%
−
1
0%
0
0%
1
0%
√
3
Explanation
Tangent being perpendicular to given line of slope 2, will have its slope as -
1
2
.
Slope of tangent=
−
f
x
f
y
=
−
6
x
+
1
2
(
y
+
1
)
=
−
1
2
∴
y
=
6
x
.
Sloping with the given curve, we have
3
x
2
+
36
x
2
+
x
+
12
x
=
0
or
13
x
(
3
x
+
1
)
=
0
∴
x
=
0
,
−
1
/
3
∴
y
=
0
,
−
2
Hence the two points are
(
0
,
0
)
,
(
−
1
3
,
−
2
)
∴
y
=
−
1
2
x
and
y
+
2
=
−
1
2
(
x
+
1
3
)
or
2
y
+
x
=
0
and
2
y
+
x
+
13
3
=
0
Ans: D
The curve
y
−
e
x
y
+
x
=
0
has a vertical tangent at the point
Report Question
0%
(
1
,
1
)
0%
n
o
p
o
i
n
t
0%
(
0
,
1
)
0%
(
1
,
0
)
Explanation
d
y
d
x
−
e
x
y
[
x
d
y
d
x
+
y
]
+
1
=
0
Or
d
y
d
x
[
1
−
x
.
e
x
y
]
+
1
−
y
.
e
x
y
=
0
Or
d
y
d
x
=
−
(
1
−
y
.
e
x
y
)
1
−
x
.
e
x
y
Now
1
−
x
e
x
y
=
0
since the slope of the tangent is
90
0
.
Hence
x
e
x
y
=
1
Or
x
(
x
+
y
)
=
1
Or
x
2
+
x
y
=
1
Or
y
=
1
−
x
2
x
Or
y
=
1
x
−
x
...(i)
Considering
y
=
0
,
x
2
=
1
x
=
±
1
.
Hence we get 2 points
(
1
,
0
)
and
(
−
1
,
0
)
.
Out of these 2, only
(
1
,
0
)
lies on the curve.
Hence the required point is
(
1
,
0
)
.
The set of all values of x for which the function
f
(
x
)
=
(
k
2
−
3
k
+
2
)
(
cos
2
x
4
−
sin
2
x
4
)
+
(
k
−
1
)
x
+
sin
1
does not posses critical points is
Report Question
0%
(
−
4
,
4
)
0%
(
0
,
4
)
0%
(
0
,
1
)
∪
(
1
,
4
)
0%
(
0
,
2
)
∪
(
2
,
4
)
Explanation
f
(
x
)
=
(
k
2
−
3
x
+
2
)
cos
x
2
+
(
k
−
1
)
x
+
sin
1
f
′
(
x
)
=
(
k
−
1
)
(
k
−
2
)
(
−
1
2
sin
x
2
)
+
(
k
−
1
)
=
(
k
−
1
)
[
1
−
k
−
2
2
sin
x
2
]
Since f(x) does not possess critical points therefore f'(x) is not equal to zero.
i.e.,
k
≠
1
or
1
−
k
−
2
2
sin
x
2
=
0
does not posses a solution or
sin
x
2
=
2
k
−
2
does not have a solution.
Hence we must
have
|
2
k
−
2
|
>
1
as
|
sin
x
2
|
<
1.
Above implies that
|
k
−
2
|
2
≤
4
or
−
2
<
(
k
−
2
)
<
2
∵
x
2
<
a
2
⇒
(
x
2
−
a
2
)
=
−
i
v
e
or
−
a
<
x
<
a
∴
0
<
k
<
4
. Also
k
≠
1.
∴
k
ϵ
(
0
,
1
)
∪
(
1
,
4
)
Determine the intervals of monotonicity of
f
(
x
)
=
log
|
x
|
.
Report Question
0%
increasing for
x
>
0
0%
increasing for
x
<
0
0%
decreasing for
x
>
0
0%
decreasing for
x
<
0
Explanation
f
′
(
x
)
=
1
x
,
x
≠
0
, at
x
=
0
,
f
(
x
)
is not defined.
Hence
f
(
x
)
is increasing for
x
>
0
since
f
′
(
x
)
>
0
∀
x
∈
(
0
,
∞
)
and
f
(
x
)
is decreasing for
x
<
0
since
f
′
(
x
)
<
0
∀
x
∈
(
−
∞
,
0
)
If
x
cos
α
+
y
sin
α
=
p
touches
x
2
+
a
2
y
2
=
a
2
,
then
Report Question
0%
p
2
=
a
2
sin
2
α
+
cos
2
α
0%
p
2
=
a
2
cos
2
α
+
sin
2
α
0%
1
/
p
2
=
sin
2
α
+
α
2
cos
2
α
0%
1
/
p
2
=
cos
2
α
+
α
2
sin
2
α
Explanation
Solving for y, we have
y
=
p
sin
α
−
x
cot
α
Putting this value in
x
2
+
a
2
y
2
=
a
2
, we have
x
2
+
a
2
(
p
sin
α
−
x
cot
α
)
2
=
a
2
⇒
x
2
(
1
+
a
2
cot
2
α
)
−
2
a
2
x
p
cot
α
sin
α
+
a
2
p
2
sin
2
α
−
a
2
=
0
The discriminant of this equation must be zero. So
a
4
p
2
cot
2
α
sin
2
α
=
(
1
+
a
2
cot
2
α
)
(
a
2
p
2
sin
2
α
−
a
2
)
⇒
a
2
p
2
cot
2
α
=
(
1
+
a
2
cot
2
α
)
(
p
2
−
sin
2
α
)
⇒
p
2
(
a
2
cot
2
α
−
1
−
a
2
cot
2
α
)
=
sin
2
α
−
a
2
cos
2
α
⇒
p
2
=
a
2
cos
2
α
+
sin
2
α
If the line
a
x
+
b
y
+
c
=
0
is a normal to the curve
x
y
=
1
, then
Report Question
0%
a
>
0
,
b
>
0
0%
a
>
0
,
b
<
0
0%
a
<
0
,
b
>
0
0%
a
<
0
,
b
<
0
Explanation
Given equation of curve
x
y
=
1
x
d
y
d
x
+
y
=
0
⇒
d
y
d
x
=
−
y
x
Slope of tangent at
P
(
x
1
,
y
1
)
=
−
1
x
2
1
Slope of normal at P is
=
x
2
....(1)
Given equation of normal
a
x
+
b
y
+
c
=
0
Slope of the normal at P is
−
a
b
.....(2)
From (1) and (2),
x
2
=
−
a
b
Since,
x
2
>
0
−
a
b
>
0
⇒
a
b
<
0
i.e.
a
b
should be negative.
⇒
a
<
0
,
b
>
0
or
a
>
0
,
b
<
0
Find the co-ordinates of the points on the curve
y
=
x
/
(
1
+
x
2
)
where the tangent to the curve has greatest slope.
Report Question
0%
(
√
3
,
√
3
4
)
0%
(
0
,
0
)
0%
(
−
√
3
,
−
√
3
4
)
0%
(
1
,
1
2
)
Explanation
Given curve
y
=
x
(
1
+
x
2
)
Here slope
S
=
d
y
d
x
=
{
1.
(
1
+
x
2
)
−
2
x
.
x
}
(
1
+
x
2
)
2
⇒
S
=
(
1
−
x
2
)
(
1
+
x
2
)
2
Now,
d
S
d
x
=
{
−
2
x
(
1
+
x
2
)
2
−
2
(
1
+
x
2
)
.2
x
(
1
−
x
2
)
}
(
1
+
x
2
)
4
=
−
2
x
(
1
+
x
2
)
(
3
−
x
2
)
(
1
+
x
2
)
4
d
S
d
x
=
2
x
[
x
−
(
−
√
3
)
]
[
x
−
√
3
]
(
1
+
x
2
)
3
.
For maximum or minimum of S,
d
S
d
x
=
0
.
⇒
x
=
−
√
3
,
0
,
√
3
.
Now, at
x
=
0
,
d
s
d
x
changes from +ive to -ive
At
x
=
±
√
3
. it changes from -ive to +ive .
Hence slope S is maximum when x=0 and min. when
x
=
±
√
3
, thus for greatest slope, we have x=0 and y=0.
Hence the required point is (0, 0), that is, the origin.
The line
y
=
x
is a tangent to the parabola
y
=
a
x
2
+
b
x
+
c
at the point
x
=
1
.If the parabola passes through the point
(
−
1
,
0
)
, then determine
a
,
b
,
c
.
Report Question
0%
a
=
1
2
,
b
=
1
4
,
c
=
1
3
.
0%
a
=
1
4
,
b
=
1
2
,
c
=
1
4
.
0%
a
=
2
,
b
=
1
,
c
=
4.
0%
a
=
4
,
b
=
2
,
c
=
4.
Explanation
Given equation of parabola is
y
=
a
x
2
+
b
x
+
c
d
y
d
x
=
2
a
x
+
b
Slope of tangent to the curve at
x
=
1
is
2
a
+
b
Given tangent is
y
=
x
. Slope of this tangent is
1.
So,
2
a
+
b
=
1
...(1)
Since, the parabola passes through
(
−
1
,
0
)
∴
a
−
b
+
c
==
0
...(2)
Given
y
=
x
is a tangent at
x
=
1
∴
y
=
1.
Hence
(
1
,
1
)
lies both on tangent and parabola
∴
a
+
b
+
c
=
1
...(3)
Solving (1), (2) and (3), we get
a
=
1
4
,
b
=
1
2
,
c
=
1
4
.
Find
d
y
d
x
if
y
=
[
x
+
√
x
+
√
x
]
1
/
2
, at
x
=
1
Report Question
0%
3
+
4
√
2
8
√
2
(
√
1
+
√
2
)
0%
Not defined
0%
0
0%
e
Explanation
y
=
[
x
+
√
x
+
√
x
]
1
2
y
2
=
x
+
√
x
+
√
x
y
2
−
x
=
√
x
+
√
x
y
4
−
2
x
y
2
+
x
2
=
x
+
√
x
Differentiating with respect to x gives us
4
y
3
y
′
−
2
y
2
−
4
x
y
y
′
+
2
x
=
1
+
1
2
√
x
At
x
=
1
4
y
3
x
=
1
y
′
−
2
y
2
x
=
1
−
4
y
y
′
x
=
1
+
2
=
1
+
1
2
4
y
3
x
=
1
y
′
−
2
y
2
x
=
1
−
4
y
y
′
x
=
1
=
−
1
2
Now at
x
=
1
y
=
√
1
+
√
1
+
√
1
=
√
1
+
√
2
Substituting in the above equation gives us
4
y
3
x
=
1
y
′
−
2
y
2
x
=
1
−
4
y
y
′
x
=
1
=
−
1
2
4
(
√
1
+
√
2
)
(
1
+
√
2
)
y
′
−
2
(
1
+
√
2
)
−
4
(
√
1
+
√
2
)
y
′
=
−
1
2
4
(
√
1
+
√
2
)
y
′
(
1
+
√
2
−
1
)
=
−
1
2
+
2
(
1
+
√
2
)
4
√
2
(
√
1
+
√
2
)
y
′
=
3
2
+
2
√
2
8
√
2
(
√
1
+
√
2
)
y
′
=
3
+
4
√
2
y
′
=
3
+
4
√
2
8
√
2
(
√
1
+
√
2
)
Hence
d
y
d
x
x
=
1
=
3
+
4
√
2
8
√
2
(
√
1
+
√
2
)
A and B are points
(
−
2
,
0
)
and
(
1
,
3
)
on the curve
y
=
4
−
x
2
. If the tangent at P on the curve be parallel to chord AB, then co-ordinates of point P are
Report Question
0%
(
−
1
3
,
5
3
)
0%
(
1
2
,
−
15
4
)
0%
(
−
1
2
,
15
4
)
0%
(
−
1
3
,
1
5
)
Explanation
Given equation of curve
y
=
4
−
x
2
...(i)
d
y
d
x
=
−
2
x
Given points
A
(
−
2
,
0
)
and
(
1
,
3
)
Slope of AB
=
3
3
=
1
⇒
−
2
x
=
1
⇒
x
=
−
1
2
So, by equation (i), we get
y
=
15
4
Hence, the point is
(
−
1
2
,
15
4
)
The line
x
a
+
y
b
=
1
touches the curve
y
=
b
e
−
x
/
a
at the point
Report Question
0%
(
a
,
b
/
a
)
0%
(
−
a
,
b
/
a
)
0%
(
a
,
a
/
b
)
0%
None of these
Explanation
Simplifying the equation of the line we get
b
x
+
a
y
=
a
b
a
y
=
−
b
x
+
a
b
Or
y
=
−
b
a
.
x
+
b
Hence
d
y
d
x
=
−
b
a
Or
−
b
a
.
e
−
x
/
a
.
=
−
b
a
Or
e
−
x
/
a
=
1
Or
x
=
0
Hence
y
=
b
.
Therefore the point is
(
0
,
b
)
If the line,
a
x
+
b
y
+
c
=
0
is a normal to the curve
x
y
=
2
,
then
Report Question
0%
a
<
0
,
b
>
0
0%
a
>
0
,
b
<
0
0%
a
>
0
,
b
>
0
0%
a
<
0
,
b
<
0
Explanation
x
y
′
+
y
=
0
Or
y
′
=
−
y
x
Hence slope of normal
=
x
y
=
2
y
2
Hence the slope is always positive.
Now
slope of the line is
−
a
b
Hence we are left with 2 options.
Either
a
<
0
and
b
>
0
Or
a
>
0
and
b
<
0
.
The function
f
(
x
)
=
2
log
(
x
−
2
)
−
x
2
+
4
x
+
1
increases in the interval
Report Question
0%
(
1
,
2
)
0%
(
2
,
3
)
0%
(
5
/
2
,
3
)
0%
(
2
,
4
)
Explanation
f
(
x
)
=
2
log
(
x
−
2
)
−
x
2
+
4
x
+
1
f
′
(
x
)
=
2
/
(
x
−
2
)
−
2
x
+
4
=
2
⋅
1
−
(
x
−
2
)
2
x
−
2
f
′
(
x
)
=
−
2
⋅
(
x
−
1
)
(
x
−
3
)
x
−
2
For
f
(
x
)
to be increasing,
f
′
(
x
)
>
0
−
2
⋅
(
x
−
1
)
(
x
−
3
)
x
−
2
>
0
⇒
x
ϵ
(
2
,
3
)
(since domain of f is
(
2
,
∞
)
Hence option B, C are correct.
The critical points of the function
f
(
x
)
=
|
x
−
1
|
x
2
are
Report Question
0%
0
0%
1
0%
2
0%
-1
Explanation
for
x
≥
1
f
(
x
)
=
x
−
1
x
2
&
f
′
(
x
)
=
−
x
2
+
2
x
x
4
for
x
<
1
f
(
x
)
=
−
x
+
1
x
2
&
f
′
(
x
)
=
x
2
−
2
x
x
4
for critical points:
f
′
(
x
)
=
0
⇒
x
=
0
,
2
now,
f
′
(
1
+
)
=
1
&
f
′
(
1
−
)
=
−
1
Since,
f
′
(
x
)
changes sign at
x
=
1
Therefore,
x
=
1
is also a critical point
Thus critical points of
f
(
x
)
are
x
=
0
,
1
,
2
Ans: A,B,C
If
f
(
0
)
=
0
and
f
″
for all
x > 0
, then
\displaystyle \frac{f(x)}{x}
Report Question
0%
decreases on
\displaystyle \left ( 0, \infty \right )
0%
increases on
\displaystyle \left ( 0, \infty \right )
0%
decreases on
\displaystyle \left ( 1, \infty \right )
0%
neither increases nor decreases on
\displaystyle \left ( 0, \infty \right )
Explanation
Given,
f\left( 0 \right) =0
f''(x)>0
, it means
f'(x)
is also increasing
Let
g(x)=\cfrac { f\left( x \right) }{ x }
g'\left( x \right) =\cfrac { xf'\left( x \right) -f\left( x \right) }{ { x }^{ 2 } }
f'\left( x \right)
is increasing and
x\epsilon \left( 0,\infty \right)
thus
f'\left( x \right) =
positive
f(x)=
positive
{ x }^{ 2 }=
positive
Therefore,
g\left( x \right) =
positive
>0
Thus,
\cfrac { f\left( x \right) }{ x }
increases for
x\epsilon \left( 0,\infty \right)
The interval(s) of decrease of of the function
\displaystyle f\left ( x \right )= x^{2}\log 27-6x\log 27+\left ( 3x^{2}-18x+24 \right )\log \left ( x^{2}-6x+8 \right )
is
Report Question
0%
\displaystyle \left ( 3-\sqrt{1+1/3e}, 2\right )
0%
\displaystyle \left ( 4, 3+\sqrt{1+1/3e}\right )
0%
\displaystyle \left ( 3, 4 +\sqrt{1+1/3e}\right )
0%
none of these
Explanation
f'\left( x \right) =2x\log27+\left( 6x-18 \right) \log\left( { x }^{ 2 }-6x+8 \right)
\displaystyle +\dfrac { \left( { 3x }^{ 2 }-18+24 \right) \left( 2x-6 \right) }{ { x }^{ 2 }-6x+8 }
=6\left( x-3 \right) \log\left( 3\left( { x }^{ 2 }-6x+8 \right) e \right)
For
f\left( x \right)
to be define
{ x }^{ 2 }-6x+8>0
\Rightarrow x>4
or
x<2
If
x>4
then
f'\left( x \right) <0
if
\log3\left( { x }^{ 2 }-6x+8 \right) e<0
i.e.3\left( { x }^{ 2 }-6x+8 \right) e<1\quad i.e.{ x }^{ 2 }-6x+\left( 8-1/3e \right) <0\\ i.e.\left( x-\left( 3+\sqrt { 1+1/3e } \right) \right) \left( x-\left( 3-\sqrt { 1+1/3e } \right) \right) <0\\ \Leftrightarrow 3-\sqrt { 1+1/3e } <x<3+\sqrt { 1+1/3e }
Hence
x\epsilon \left( 4,3+\sqrt { 1+1/3e } \right)
Similarly if
x<2
then
f'\left( x \right) <0
if
\log3\left( { x }^{ 2 }-6x+8 \right) e>0
i.e\quad x<3-\sqrt { 1+1/3e }
or
x>3+\sqrt { 1+1/3e }
Hence
x\epsilon \left( 3-\sqrt { 1+1/3e } ,2 \right)
The slope of the tangent to the curve represented by
x= t^{2}+3t-8
and
y= 2t^{2}-2t-5
at the point
M\left ( 2,-1 \right )
is
Report Question
0%
7/6
0%
2/3
0%
3/2
0%
6/7
Explanation
We first determine the value of
t
corresponding to the given values ofx and
y
. From
t^{2}+3t-8= 2
, we get
t = 2, -5
, and from
2t^{2}-2t-5= 2
we get
t = 2, -1
. Hence to the given point there corresponds the value
t = 2
. Therefore, the slope of the tangent at
\left ( 2,-1 \right )
is
\displaystyle \left | y' \right |_{t=2}=\left | \dfrac{dy/dt}{dx/dt} \right |_{t=2}\:=\left | \dfrac{4t-2}{2t+3} \right |_{t=2}=\:\dfrac{6}{7}
The number of critical points of the fuction
\displaystyle f'\left ( x \right ),
where
\displaystyle f'\left ( x \right )= \frac{\left | x-2 \right |}{x^{3}}
are
Report Question
0%
0
0%
1
0%
3
0%
4
Explanation
\displaystyle f\left( x \right) =\begin{cases} \dfrac { x-2 }{ { x }^{ 3 } } ,\quad \quad x>1 \\ \dfrac { 2-x }{ { x }^{ 3 } } ,\quad \quad x<1,x\neq 0 \end{cases}
\displaystyle f'\left( x \right) =\begin{cases} \dfrac { 2\left( 3-x \right) }{ { x }^{ 4 } } ,\quad x\in \left( -\infty ,0 \right) \cup \left( 0,1 \right) \\ \dfrac { 2\left( x-3 \right) }{ { x }^{ 4 } } ,\quad \quad x\in \left( 1,\infty \right) \end{cases}
\displaystyle f''\left( x \right) =\begin{cases} \dfrac { 6\left( x-4 \right) }{ { x }^{ 5 } } ,\quad x\in \left( -\infty ,0 \right) \cup \left( 0,1 \right) \\ \dfrac { 6\left( 4-x \right) }{ { x }^{ 5 } } ,\quad \quad x\in \left( 1,3 \right) \cup \left( 3,\infty \right) \end{cases}
f''\left( x \right)
doesn't exits at
x=3
Thus critical point of
f'\left( x \right)
is 3.
The value of a for which the function
\displaystyle f\left ( x \right )= \left ( 4a-3 \right )\left ( x+\log 5 \right )+2\left ( a-7 \right )\cot\left ( x/2 \right )\sin ^{2}\left ( x/2 \right )
does not possess critical points is
Report Question
0%
\displaystyle \left ( -\infty , -4/3 \right )
0%
\displaystyle \left ( -\infty , -1 \right )
0%
\displaystyle \left ( 1, \infty \right )
0%
\displaystyle \left ( 2, \infty \right )
Explanation
f\left( x \right) =\left( 4a-3 \right) \left( x+\log 5 \right) +2\left( a-7 \right) \cot \left( x/2 \right) \sin ^{ 2 } \left( x/2 \right)
\Rightarrow f\left( x \right) =\left( 4a-3 \right) \left( x+\log 5 \right) +\left( a-7 \right) \sin { x }
f(x)
posses critical points when
f'\left( x \right) =\left( 4a-3 \right) +\left( a-7 \right) \cos { x } =0
\Rightarrow \cos { x } =-\dfrac { 4a-3 }{ a-7 }
\Rightarrow -1\le -\dfrac { 4a-3 }{ a-7 } \le 1
\Rightarrow -\dfrac { 4 }{ 3 } \le a\le 2
Therefore,
f(x)
does not have critical points when
a\in (-\infty,-4/3)\cup (2,\infty)
Ans: A,D
The critical points of the function
\displaystyle f\left ( x\right )=\left ( x-2 \right )^{2/3}\left ( 2x+1\right )
are
Report Question
0%
-1,2
0%
1
0%
\displaystyle 1,-\frac{1}{2}
0%
1,2
Explanation
Given,
f(x)=(x-2)^{2/3}(3x+1)
\displaystyle f'\left( x \right) =\dfrac { 2 }{ 3 } { \left( x-2 \right) }^{ \frac { -1 }{ 3 } }\left( 2x+1 \right) +2{ \left( x-2 \right) }^{ \frac { 2 }{ 3 } }=10\left( x-1 \right) { \left( x-2 \right) }^{ \frac { -1 }{ 3 } }
f'\left( x \right) =0
\Rightarrow x=1
Also
f'\left( x \right)
does not exits at
x=2
Hence the critical points are
x=1,2
The coordinates of the point on the curve
\displaystyle \left ( x^{2}+1 \right )\left ( y-3 \right )=x
where a tangent to the curve has the greatest slope are given by
Report Question
0%
\displaystyle \left ( \sqrt{3}, 3+\sqrt{3}/4 \right )
0%
\displaystyle \left ( -\sqrt{3}, 3-\sqrt{3}/4 \right )
0%
\displaystyle \left ( 0, 3 \right )
0%
none of these
Explanation
Solving for y the given equation we have
\displaystyle y=3=\dfrac { x }{ { x }^{ 2 }+1 } \Rightarrow \dfrac { dy }{ dx } =\dfrac { 1-{ x }^{ 2 } }{ { \left( 1+{ x }^{ 2 } \right) }^{ 2 } } =f\left( x \right)
Now
\displaystyle f'\left( x \right) =\dfrac { -2x\left( 3-{ x }^{ 2 } \right) }{ { \left( 1+{ x }^{ 2 } \right) }^{ 2 } }
For extremum of
f\left( x \right)
, we have
f'\left( x \right) =0\Rightarrow x=0,x=\pm \sqrt { 3 }
At
x=0,f'\left( x \right)
changes sign from positive to negative
\Rightarrow f\left( x \right)
has maxima at
x=0
.
Thus the required point is
\left( 0,3 \right)
The angle at which the curve
y=ke^{kx}
intersects the
y
-axis is
Report Question
0%
\tan ^{-1}(k^{2})
0%
\cot ^{-1}(k^{2})
0%
\sin ^{-1}\left ( 1/\sqrt{1+k^{4}} \right )
0%
\sec ^{-1}\left ( 1/\sqrt{1+k^{4}} \right )
Explanation
\displaystyle \dfrac{dy}{dx}=k^{2}e^{kx}
.
The curve intersects
y
-axis at
\left ( 0,k \right )
So,
\displaystyle \dfrac{dy}{dx}|_{\left ( 0,k \right )}=k^{2}
.
If
\theta
is the angle at which the given
curve intersects the
y
-axis then
\displaystyle \tan \left ( \pi /2-\theta \right )=\dfrac{k^{2}-0}{1+0.k^{2}}=k^{2}
.
Hence
\theta =\cot ^{-1}k^{2}
The lines tangent to the curves
\displaystyle y^{3}-x^{2}y+5y-2x=0
and
\displaystyle x^{4}-x^{3}y^{2}+5x+2y=0
at the origin intersect at an angle
\displaystyle \theta
equal to
Report Question
0%
\displaystyle \frac{\pi }{6}
0%
\displaystyle \frac{\pi }{4}
0%
\displaystyle \frac{\pi }{3}
0%
\displaystyle \frac{\pi }{2}
Let
\displaystyle f\left ( x \right )=x^{3}+ax+b
with
\displaystyle a\neq b
and suppose the tangent lines to the graph of
f
at
x = a
and
x = b
have the same gradient Then the value of
f (1)
is equal to
Report Question
0%
0
0%
1
0%
\displaystyle -\frac{1}{3}
0%
\displaystyle \frac{2}{3}
Explanation
f(x)=x^3+ax+b
f'(x)=3x^2+a
Given gradient at
x=a
and at
x=b
are same
\Rightarrow 3a^2 +a=3b^2+a\Rightarrow b^2=a^2
But given
a\neq b
\Rightarrow a+b=0 ..(1)
Hence
f(1)=1+a+b=1
using (1)
A curve with equation of the form
\displaystyle y=ax^{4}+bx^{3}+cx+d
has zero gradient at the point (0, 1) and also touches the x-axis at the point (-1, 0) then the values of x for which the curve has a negative gradient are
Report Question
0%
x > -1
0%
x < 1
0%
x < -1
0%
\displaystyle -1\leq \times \leq 1
Explanation
Given,
\displaystyle y=ax^{4}+bx^{3}+cx+d
\Rightarrow y'=4ax^3+3bx^2+c
Using given conditions,
y(0)=1\Rightarrow d=1
y'(0)=0\Rightarrow c=0
y(-1)=0\Rightarrow a-b=-1 ..(1)
and
y'(-1)=0\Rightarrow 4a-3b=0 ..(2)
Solving equation (1) and (2) we get,
a=3,b=4
Hence the polynomial is,
y=3x^4+4x^3+1
y'=12x^2(1+x)
Now for negative gradient
y' < 0\Rightarrow 12x^2(1+x)< 0
\Rightarrow x< -1
If
f'(x) = g(x)\left ( x-a \right )^{2}
, where
g(a)\neq 0
and
g
is continuous at
x = a
then
Report Question
0%
f
is increasing near a if
g(a) > 0
0%
f
is increasing near a if
g(a) < 0
0%
f
is decreasing near a if
g(a) > 0
0%
f
is decreasing near a if
g(a) < 0
Explanation
Since
g
is continuous at
x = a
if
g(a) > 0
, there exist an open interval
I
containing
a
so that
g(x) > 0 \forall x\in I
\Rightarrow {f}'(x)\geq 0\forall x\in I
. Therefore,
f
is increasing near
a
.
Similarly
f
is decreasing near
a
if
g(a) < 0
.
Ans: A,D
The curve
y= ax^{3}+bx^{2}+cx+8
touches
x
-axis at
P\left ( -2,0 \right )
and cuts the
y
-axis at a point
Q(0,8)
where its gradient isThe values of
a
,
b
,
c
are respectively
Report Question
0%
-\displaystyle \frac{1}{2},-\frac{3}{4},3
0%
\displaystyle 3, -\frac{1}{2},-4
0%
\displaystyle -\frac{1}{2},-\frac{7}{4},2
0%
none of these
Explanation
Given,
y= a x^3+b x^2+cx+8
\therefore \displaystyle \dfrac{dy}{dx}= 3ax^{2}+2bx+c
Since the curve touches
x
-axis at
\left ( -2,0 \right )
so
\displaystyle \dfrac{dy}{dx}|_{\left ( -2,0 \right )}= 0\Rightarrow 12a-4b+c= 0
\left ( i \right )
The curve cut the
y
-axis at
\left ( 0,8 \right )
so
\displaystyle \dfrac{dy}{dx}|_{\left ( 0,8 \right )}= 3\Rightarrow c= 3
Also the curve passes through
\left ( -2,0 \right )
so
0= -8a+4b-2c+8\Rightarrow -8a+4b-2= 0
\left ( ii \right )
Solving
\left ( i \right )
and
\left ( ii \right )
a = -1/4
,
b =0
Suppose
f'(x)
exists for each
x
and
h(x) = f(x) - (f(x))^{2}+(f(x))^{3}
for every real number
x
. Then
Report Question
0%
h
is increasing whenever f is increasing
0%
h
is increasing whenever f is decreasing
0%
h
is decreasing whenever f is decreasing
0%
nothing can be said in general.
Explanation
h(x) = f(x) - (f(x))^{2}+(f(x))^{3}
{h}'(x)={f}'(x)-2{f}'(x)f(x)+3{f}'(x)f(x)^{2}
\displaystyle =3{f}'(x)\left [ f(x)^{2}-\frac{2}{3}f(x)+\frac{1}{3} \right ]
=3{f}'(x)\left [ \left ( f(x)-1/3 \right )^{2}+2/9 \right ]
Thus,
{h}'(x)>0
if
{f}'(x)>0
and
{h}'(x)<0
if
{f}'(x)<0
Therefore,
h
increases whenever
f
increases
and
h
decreases whenever
f
decreases
Ans: A,C
The critical points of the function
f\left( x \right)={ \left( x-2 \right) }^{ 2/3 }\left( 2x+1 \right)
are
Report Question
0%
1
and
2
0%
1
and
\displaystyle-\frac{1}{2}
0%
-1
and
2
0%
1
Explanation
\displaystyle f\left( x \right) ={ \left( x-2 \right) }^{ 2/3 }\left( 2x+1 \right)
\displaystyle f'\left( x \right) =\frac { 2 }{ 3 } { \left( x-2 \right) }^{ -1/3 }\left( 2x+1 \right) { \left( x-2 \right) }^{ 2/3 }=0.2
Clearly
f'(x)
is not defined at
x=2
.
\therefore x=2
is a critical point.
Another critical point is given by
f'(x)=0,
i.e.,
\displaystyle \dfrac { 2 }{ 3 } \dfrac { 2x+1 }{ { \left( x-2 \right) }^{ 1/3 } } +2{ \left( x-2 \right) }^{ 2/3 }=0
\displaystyle \Rightarrow \frac { 2 }{ 3 } \left( 2x+1 \right) +2\left( x-2 \right) =0
\Rightarrow 4x+2+6x-12=0
\Rightarrow x=1
The graph a function
f
is given.
On what interval is
f
increasing ?
Report Question
0%
(-1, 3]
0%
(-3,1)
0%
(-3,1]
0%
none of these
Explanation
A function
f(x)
is said to be increasing if as
x
increases
f(x)
increases as well
It can be Clearly observed from the graph that for the interval
(-1,3]
function f is increasing
The points of contact of the vertical tangents
x= 2-3\sin \theta
,
y= 3+2\cos \theta
are
Report Question
0%
\left ( 2,5 \right ),\left ( 2,1 \right )
0%
\left ( -1,3 \right ),\left ( 5,3 \right )
0%
\left ( 2,5 \right ),\left ( 5,3 \right )
0%
\left ( -1,3 \right ),\left ( 2,1 \right )
Explanation
For the tangents to be vertical,
\dfrac{dy}{dx}=\infty
Or
\dfrac{dx}{dy}=0
Or
\dfrac{dx}{d\theta}=0
Or
-3\cos\theta=0
Or
\theta=\dfrac{2n-1}{2}\pi
Hence
\theta=\dfrac{\pi}{2},\dfrac{3\pi}{2}
.
Now
x_{\tfrac{\pi}{2}}
=-1
y_{\tfrac{\pi}{2}}
=3
.
Similarly
x_{\tfrac{3\pi}{2}}=5
y_{\tfrac{3\pi}{2}}=3
.
Hence the points are
(-1,3)
and
(3,5)
.
0:0:2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page