Processing math: 100%

CBSE Questions for Class 12 Commerce Maths Determinants Quiz 10 - MCQExams.com

Let A be a square matrix of order 3×3 then |KA| is equal to
  • K|A|
  • K2|A|
  • K3|A|
  • 3|KA|
Find the equation of line joining (1,2) and (3,6) using determinants. Let p(x,y) be any point on the line joining (1,2)(3,6)
  • y=x
  • 2y=x
  • y=2x
  • y=2x
Find the equation of the line joining (3,1) and (9,3) using determinants.
  • x=3y
  • y=3x
  • y=3x
  • 3y=x
Value of determinant |cos50sin10sin50cos10| is:
  • 0
  • 1
  • 1/2
  • 1/2
Value of determinant |cos80cos10sin80sin10| is:
  • 0
  • 1
  • 1
  • None of these
Co-factors of the first column of determinant
|52031|
  • 1,3
  • 1,3
  • 1,20
  • 1,20
If a,b,c are the pth,qth and rth terms of an H.P, then the lines bcx+py+1=0, cax+qy+1=0 and abx+ry+1=0,
  • are concurrent
  • form a triangle
  • are parallel
  • mutually perpendicular lines
If x1,y1 are the roots of x2+8x20=0 and  x2,y2 are the roots of 4x2+32x57=0 and x3,y3 are the roots of 9x2+72x112=0 such that yi<0, then the points (x1,y1),(x2,y2) and (x3,y3)
  • are collinear
  • form an equilateral triangle
  • form a right angled isosceles triangle
  • are concyclic
If the lines x+py+p=0, qx+y+q=0 and rx+ry+1=0(p,q,r being distinct and 1) are concurrent, then the value of
pp1+qq1+rr1=
  • 1
  • 1
  • 2
  • 2
The lines px+qy+r=0,qx+ry+p=0andrx+py+q=0 are concurrent then 
  • p+q+r=0
  • p3+q3+r3=3pqr
  • p2+q2+r2pqqrrp=0
  • p2+q2+r2=2(pq+qr+rp)
The coordinates of the point P on the line 2x+3y+1=0 such that |PAPB| is maximum, where A(2,0) and B(0,2) is
  • (4,3)
  • (7,5)
  • (10,7)
  • (8,5)
If the lines p1x+q1y=1,p2x+q2y=1 and p3x+q3y=1 be concurrent, then the points (p1,q1),(p2,q2) and (p3,q3) ,
  • are collinear
  • form an equilateral triangle
  • form a scalene triangle
  • form a right angled triangle
If the lines x+ay+a=0, bx+y+b=0, cx+cy+1=0(abc1)  are concurrent, then the value of aa1+bb1+cc1, is
  • 1
  • 0
  • 1
  • 3
If x1,x2,x3 as well as y1,y2,y3 are in G.P. with same common ratio, then the points P(x1,y1),Q(x2,y2) and R(x3,y3)
  • lies on a straight line
  • lie on an ellipse
  • lie on a circle
  • are vertices of a triangle
The values of |A50| equals
  • 0
  • 1
  • -1
  • 25
The value of || equals
  • 0
  • 1
  • 2
  • 1
If A=[213531323], then A.(AdjA)=
  • (Adj.AT)
  • (Adj.A).A
  • |A|.A.
  • None of these
If A is a square matrix of order 3, then |(AAT)105| is equal to
  • 105|A|
  • 105|A|2
  • 105
  • none of these
Let |1+xxx2x1+xx2x2x1+x|=ax5+bx4+cx3+dx2+λx+μ be an identity in x, where a,b,c,d,λ,μ are independent of x. Then the value of λ is
  • 3
  • 2
  • 4
  • 1
The value of |B| is equal to
  • |A|
  • |A|/2
  • 2|A|
  • none of these
Let f (n)= |nn+1n+2nPnn+1Pn+1n+2Pn+2nCnn+1Cn+1n+2Cn+2|, where the symbols have their usual meanings. The f(n) is divisible by
  • n2+n+1
  • (n+1)!
  • n!
  • none of these
Consider the points P=(sin(βα),cosβ), Q=(cos(βα),sinβ) and R=(cos(βα+θ),sin(βθ)), where 0<α,β<π4 then 
  • P lies on the line segment RQ
  • Q lies on the line segment PR
  • R lies on the line segment QP
  • P,Q,R are non-collinear.
If the points (a,1),(1,b) and (a1,b1) are collinear, α,β are respectively the arithmetic and geometric means of a and b, then 4αβ2 is equal to
  • 1
  • 0
  • 3
  • 2
If the points (2,0),(1,13) and (cosθ,sinθ) are collinear, then the number of values of θ[0,2π] :
  • 0
  • 1
  • 2
  • infinite
If A=[abcxyzpqr], B=[qbypaxrcz] then
  • |A|=|B|
  • |A|=|B|
  • |A|=2|B|
  • A is invertible if and only if B is invertible.
Let |x2xx2x6xx6|=αx4+βx3+γx2+δx+λ then the value of 5α+4β+3γ+2δ+λ=
  • 11
  • 0
  • 16
  • 16
If [x] stands greatest integer x then the value of
|[e][π][π26][π][π26][e][π26][e][π]| equals to=?
  • -8
  • 8
  • -1
  • 1
If Δ=|x+1x+2x+ax+2x+3x+bx+3x+4x+c|=0, then
the family of lines ax+by+c=0 passes through
  • (1,1)
  • (1,2)
  • (2,3)
  • (0,0)
Two n×n square matrices A and B are said to be similar if there exists a non-singular matrix P such that  P1AP=B
If A and B are two similar matrices, then

  • det(A)=det(B)
  • det(A)+det(B)=0
  • det(AB)0
  • none of these
Let 0<θ<π/2 and
Δ(x,θ)=|xtanθcotθtanθx1cotθ1x|
then
  • Δ(0,θ)=0
  • Δ(x,π4)=xx3
  • Min0<θ<π/2Δ(1,θ)=0
  • Δ(x,θ) is independent of x
If Δ=|a11a12a13a21a22a23a31a32a33| and cij=(1)i+j (determinant obtained by deleting ith row and jth column), then |c11c12c13c21c22c23c31c32c33|=Δ2


If |1xx2xx21x21x|=7 and Δ=|x310xx40xx4x31xx4x310|, then
  • Δ=7
  • Δ=343
  • Δ=49
  • Δ=49
The determinant |sinαcosα1sinβcosβ1sinγcosγ1| is equal to
  • 4sinαβ2sinαγ2sinγα2
  • sinα+sinβ+sinγ
  • sin(αβ)+sin(βγ)+sin(γα)
  • none of these
The number of distinct real roots of |sinxcosxcosxcosxsinxcosxcosxcosxsinx|=0 in the interval π4<xπ4 is
  • 0
  • 2
  • 1
  • >2
Say true or false:
Points P(10,6),Q(6,4) and C(8,3) are collinear. 
  • True
  • False
If the points (1,3),(2,p) and (5,1) are collinear, the value of p is
  • 1
  • 1
  • 0
  • 2
(1,6),(3.2) and (2,K) are collinear points. What is K?
  • 6
  • 2
  • 8
  • 10
  • 18
If a1,a2,....,an, ..... are in G.P. then |loganlogan+1logan+2logan+3logan+4logan+5logan+6logan+7logan+8| is
  • 0
  • 1
  • 1
  • None of these
If the determinant |a+p1+xu+fb+qm+yv+gc+rn+zw+h| splits into exactly K determinants of order 3, each element of which contains only one term, then the value of K is
  • 9
  • 8
  • 24
  • 12
The coefficient of x2 in the expansion of the determinant
|x2x3+1x5+2x3+3x2+xx3+x4x+4x3+x423| is
  • 10
  • 8
  • 2
  • 6
  • 8
The Value of the determinant |b2abbcbcacaba2abb2abbcaccaaba2| =
  • abc
  • a + b + c
  • 0
  • ab + bc + ca
 Points (a, 0), (0, b) and (1, 1)are collinear, if:
  • 1a+1b=1
  • 1a1b=1
  • a+b=1
  • ab=ab
The value of x satisfying the equation |cos2xsin2xsin2xsin2xcos2xsin2xsin2xsin2xcos2x|=0 and xϵ[0,π4] is
  • π4
  • π2
  • π16
  • π3
  • π8
Consider the following statements:
1. Determinant is a square matrix.
2. Determinant is a number associated with a square matrix.
Which of the above statements is/are correct?
  • 1 only
  • 2 only
  • Both 1 and 2
  • Neither 1 nor 2
If A is 33 show symmetric matrix then |A|=?:
  • 0
  • 1
  • 1
  • N.O.T.
The value of the determinant |b2abbcbcacaba2abb2abbcaccaaba2| =
  • abc
  • a+b+c
  • 0
  • ab+bc+ca
If  B is a square matrix of order 4 such that |B|=24 ,then the value of |adjB| is equal to
  • 24
  • 242
  • 243
  • 244
if a2,b2+c2+ab+bc+ca0a,b,cϵR, then value of the determinant |(a2+b2+c2)2a2+b211(b+c+2)b2+c2c2+a21(c+a+2)2| equals
  • 65
  • a2+b2+c2+31
  • 4(a2+b2+c2)
  • 0
If A is a square matrix of order 3 such that A(adjA)= 
[200020002] then |adjA|=
  • 2
  • 4
  • 8
  • 16
Adj [102152021]=[9a211022b][ab]=
  • [45]
  • [41]
  • [41]
  • [41]
x - 4 is factor of |x22x33x4x42x93x16x82x273x64|
  • True
  • False
0:0:3


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers