Loading [MathJax]/jax/element/mml/optable/MathOperators.js

CBSE Questions for Class 12 Commerce Maths Determinants Quiz 11 - MCQExams.com

If Dr=|rxn(n+1)/22r1yn23r2zn(3n1)/2|, then nr×1Dr is equal to
  • 16n(n+1)(2n+1)
  • 14n2(n+1)2
  • 0
  • None of these
 Δ=|1+a2+a41+ab+a2b21+ac+a2c21+ab+a2b21+b2+b41+bc+b2c21+ac+a2c21+bc+b2c21+c2+c4|isequalto                  
  • (a+b+c)6
  • (ab)2(bc)2(ca)2
  • 4 (a-b)(b-c)(c-a)
  • None of these
If in the determinant Δ=|a1b1c1a2b2c2a3b3c3|, A1,B1,C1 etc., be the co-factors of a1,b1,c1 etc., then which of the following relations is incorrect?
  • a1A1+b1B1+c1C1=Δ
  • a2A2+b2B2+c2C2=Δ
  • a3A3+b3B3+c3C3=Δ
  • a1A2+b1B2+c1C2=Δ
Let A=[100210321]andU1,U2,U3 be column matrices satisfying AU1=[100],AU2=[236],AU3=[231]. If U is 3×3 matrix, whose columns are U1,U2,U3. then |U| is 
  • 11
  • 3
  • 32
  • 2
|1+x1111+y1111+z|=
  • xyz(1x+1y+1z)
  • xyz
  • 1+1x+1y+1z
  • 1x+1y+1z
If r=|2r12.3r14.5r1xyz2n13n15n1|, then nr=1(r) is equal to
  • xyz
  • 1
  • 1
  • 0
|a2+2a2a+112a+1a+21331|=
  • (a1)2
  • (a1)3
  • (a1)4
  • 2(a1)
Let k be a positive real number and let 
A = [2k12k2k2k12k2k2k1]
B = [02k1k12k02k2kk0]
If det(Adj(A))+det(Adj(B)) = 2 then [k] is equal to
  • 4
  • 6
  • 0
  • 1
If θεR, then the determinant Δ=|sinθcosθsin2θsin(θ+2π3)cos(θ+2π3)sin(2θ+4π3)sin(θ2π3)cos(θ2π3)sin(2θ4π3)|=
  • sinθcosθ
  • sin2θ
  • 1+sin2θcos2θ
  • None of these
If θϵR, then the determinant  Δ =|sinθcosθsin2θsin(θ+2π3)cos(θ+2π3)sin(2θ+2π3)sin(θ2π3)cos(θ2π3)sin(2θ2π3)|
  • sinθcosθ
  • sin2θ
  • 1+sin2θcos2θ
  • None of these
Solve Δ=|13+325515+265103+65155|=
  • 152253
  • 253152
  • 35
  • 152+73
Let [cos1xcos1ycos1zcos1ycos1zcos1xcos1zcos1xcos1y] such that |A|=0, then maximum value of x+y+z is
  • 3
  • 0
  • 1
  • 2
Matrix A=|x321y422z|, if xyz=60 and 8x+4y+3z=20, then a(adjA) is equal to 
  • |640006400064|
  • |880008800088|
  • |680006800068|
  • |340003400034|
The number of distinct values of a 2×2 determinant whose entries are from set {1,0,1} is
  • 4
  • 6
  • 5
  • 3
f(x)=|x2(x1)2x3x1x2(x+1)3x(x+1)2(x+2)3|
  • 0
  • 2
  • 2
  • None of these
If (ω1)  is a cubic root of unity then |11+i+ω2ω21i1ω21i1+ωi1| equals-
  • 0
  • 1
  • i
  • ω
If A is a square matrix of order 3, then |Adj(AdjA2)|=
  • |A|2
  • |A|4
  • |A|8
  • |A|16
If 1,ω,ω2 are the roots of unity then =|1ωnω2nωnω2n1ω2n1ωn| is equal to-
  • 0
  • 1
  • ω
  • ω2
If |A| denotes the value of the determinant of the square matrix A order 3, then |2A|=
  • 8|A|
  • 8|A|
  • 2|A|
  • None of these
f(x)=|2cosx10xπ22cosx1012cosx|f(x)=
  • 0
  • 2
  • π/2
  • π6
State whether the statement is true/false.

If A(x)  =[cosxsinx0sinxcosx0001], then adj [A(x)]=A(x).
  • True
  • False
If a+b+c=0  one root of |axcbcbxabacx| =0 is
  • x=1
  • x=2
  • x=a2+b2+c2
  • x=0
If a matrix [(xa)2(xb)2(xc)2(ya)2(yb)2(yc)2(za)2(zb)2(zc)2] is a zero matrix, then a,b,c,x,y,z are connected by:
  • a+b+c=0,x+y+z=0
  • a+b+c=0,x=y=z
  • a=b=c,x+y+z=0
  • None of these
If |x2xx2x0xx8| = Ax4+Bx3+cx2+Dx+E , then the value of 5A+4B+2C+2D+E is equal to
  • 11
  • 17
  • 17
  • 0
The maximum and minimum values of (3×3) determinant whose elements belong to {0,1,2,3} is
  • ±9
  • ±15
  • ±54
  • ±32
The value of |111(2x+2x)2(3x+3x)2(5x+5x)2(2x2x)2(3x3x)2(5x5x)2| is equal to
  • 0
  • 30x
  • 30x
  • None of these
If the points A(x,2),B(3,4) and C(7,5) are collinear, then the value of x is :
  • 63
  • 63
  • 60
  • 60
The determinant \left| \begin{matrix} a & b & a\alpha +b \\ b & c & b\alpha +c \\ a\alpha +b & b\alpha +c & 0 \end{matrix} \right| is equal to zero, if
  • a,b,care in A.P.
  • a,b,c are in G.P.
  • a,b,c are in H.P.
  • None of these
The determinant \Delta=\left| \begin{matrix} { a }^{ 2 }\left( 1+x \right)  & ab & ac \\ ab & { b }^{ 2 }\left( 1+x \right)  & bc \\ ac & bc & { c }^{ 2 }\left( 1+x \right)  \end{matrix} \right| is divisible by  
  • 1+x
  • (1+x)^{2}
  • x^{2}
  • none\ of\ these
If A=\begin{bmatrix} 2 & 1 & -1 \\ 0 & 1 & 4 \\ 0 & 0 & 3 \end{bmatrix}, then tr(adj(adj\ A)) is equal  to
  • 18
  • 24
  • 36
  • 48
Which of the following is/are true ? 
 (i)  Adjoint of a symmetric matrix is symmetric 
(ii)  Adjoint of a unit matrix is a unit matrix
(iii) A(adj A)=(adj A) A= [A]f and 
(iv) Adjoint of a diagonal matrix is a diagonal matrix  
  • (i)
  • (ii)
  • (iii) and (iv)
  • None of these
If A=\begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}, then the value of |A||adj A| is 
  • a^{9}
  • a^{5}
  • a^{6}
  • a^{27}
If A=\left[ \begin{matrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{matrix} \right], then det(adj(adj A))
  • (14)^{4}
  • (14)^{3}
  • (14)^{2}
  • (14)^{1}
A=\begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix} and A (adj A)=KI, then the value of 'K' is ...
  • 2
  • -2
  • 10
  • -10
Let P\left( x \right) =\begin{vmatrix} x & -3+4i & 3-4i \\ x & -7i & 5+6i \\ x & 7-2i & -7-2i \end{vmatrix}
The number of values of x for which P\left( x \right) =0 is 
  • 0
  • 1
  • 2
  • 3
Let f\left( x \right) = {\sin ^{ - 1}}\left( {\tan x} \right) + {\cos ^{ - 1}}\left( {\cot x} \right) then
  • f(x)= \frac {\pi}{2} wherever defined
  • domain of f(x) is x= n \pi \pm \frac {\pi}{4}, n \in 1
  • period f(x) is \frac {\pi}{2}
  • f(x) in many one function
If A = \begin{bmatrix} 4 & 2 \\ 3 & 4 \end{bmatrix} then |adj A| is equal to 
  • 16
  • 10
  • 6
  • none of these
Let A be a non-singular matrix of order n nad \left|A\right|=K, then \left(adj A\right)^{-1} is 
  • \dfrac{A}{K}
  • K^{n-1}\left(adj A\right)
  • K^{n-2}A
  • KA
Which of the following values of  \alpha  satisfy the equation

\left| \begin{array}{ll} { (1+\alpha )^{ { 2 } } } & { (1+2\alpha )^{ { 2 } } } & { (1+3\alpha )^{ { 2 } } } \\ { (2+\alpha )^{ { 2 } } } & { (2+2\alpha )^{ { 2 } } } & { (2+3\alpha )^{ { 2 } } } \\ { (3+\alpha )^{ { 2 } } } & { (3+2\alpha )^{ { 2 } } } & { (3+3\alpha )^{ { 2 } } } \end{array} \right| =-648\alpha  ?
  • -4
  • 9
  • -9
  • 4
Let A =[a_{ij}] be a 3 \times 3 matrix whose determinant is 5. Then the determinant of the matrix B = [ 2^{i-j} a_{ij} ] is
  • 5
  • 10
  • 20
  • 40
If A = \begin{bmatrix}1 & -1 & 2\\ 3 & 0 & -2\\ 1 & 0 & 3\end{bmatrix}, value of |A(adj \,A)|:
  • 11
  • 11^2
  • 11^3
  • -11
If \left[ \begin{matrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{matrix} \right] then |adj\ (adj\ A)| is equal to
  • 18^{3}
  • 18^{2}
  • 18^{4}
  • 18^{6}
If A=\begin{bmatrix} 1 & -2 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}, then A.adj(a)=
  • \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}
  • \begin{bmatrix} 5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5 \end{bmatrix}
  • \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
  • \begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix}
If A is a square matrix of order n and |A|=D and |adj A|=D^{\prime}, then
  • DD^{\prime}=D^{2}
  • DD^{-1}=D^{-1}
  • DD^{\prime}=D^{n-1}
  • DD^{\prime}=D^{n}
If the points (k, 2 - 2k) (1 - k, 2k) and (-k -4, 6 -2x) be collinear the possible values of k are
  • -\dfrac{1}{2}
  • \dfrac{1}{2}
  • 1
  • - 1
If A=\begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}, then adj(3A^{2}+12A) is equal to:
  • \begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix}
  • \begin{bmatrix} 72 & -84 \\ -63 & 51 \end{bmatrix}
  • \begin{bmatrix} 51 & 63 \\ 84 & 72 \end{bmatrix}
  • \begin{bmatrix} 51 & 84 \\ 63 & 72 \end{bmatrix}
Let {\Delta _{\text{o}}} =  \left[ \begin{matrix} { a }_{ 11 } & { a }_{ 12 } & { a }_{ 13 } \\ { a }_{ 21 } & { a }_{ 22 } & { a }_{ 23 } \\ { a }_{ 31 } & { a }_{ 32 } & { a }_{ 33 } \end{matrix} \right] and let {\Delta _1} denote the determinant formed by the cofactors of elements of {\Delta _0} and {\Delta _2} denote the determinant formed by the cofactor of {\Delta _1}, similarly {\Delta _n} denotes the determinant formed by the cofactors of {\Delta _{n - 1}} then the determinant value of {\Delta _n} is
  • {\Delta _0}^{2n}\;
  • {\Delta _0}^{{2^n}}\;
  • {\Delta _0}^{{n^2}}\;
  • {\Delta ^2}_0\;
P = \left[ {\begin{array}{*{20}{c}}1&\alpha &3\\1&3&3\\2&4&4\end{array}} \right] is the adjoint of a 3 \times 3 matrix A and \left| A \right| = 4, then \alpha is equal to 
  • 4
  • 11
  • 5
  • 0
If  A = \left( \begin{array} { l l } { 1 } & { 2 } \\ { 3 } & { 5 } \end{array} \right),   then the value of the determinant  \left| A ^ { 2009 } - 5 A ^ { 2008 } \right|  is
  • - 6
  • - 5
  • - 4
  • 4
  • 6
If A=\begin{bmatrix} { a }_{ 1 } & { a }_{ 2 } & { a }_{ 3 } \\ { b }_{ 1 } & { b }_{ 2 } & { b }_{ 3 } \\ { c }_{ 1 } & { c }_{ 2 } & { c }_{ 3 } \end{bmatrix} and A_i,B_i,C_i are cofactors of a_i,b_i,c_i then a_1B_1+a_2B_2+a_3B_3=
  • 0
  • |A|
  • |A|^2
  • 2|A|
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers