Loading [MathJax]/jax/element/mml/optable/MathOperators.js
MCQExams
0:0:2
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Determinants Quiz 11 - MCQExams.com
CBSE
Class 12 Commerce Maths
Determinants
Quiz 11
If
D
r
=
|
r
x
n
(
n
+
1
)
/
2
2
r
−
1
y
n
2
3
r
−
2
z
n
(
3
n
−
1
)
/
2
|
, then
n
∑
r
×
1
D
r
is equal to
Report Question
0%
1
6
n
(
n
+
1
)
(
2
n
+
1
)
0%
1
4
n
2
(
n
+
1
)
2
0%
0
0%
None of these
Δ
=
|
1
+
a
2
+
a
4
1
+
a
b
+
a
2
b
2
1
+
a
c
+
a
2
c
2
1
+
a
b
+
a
2
b
2
1
+
b
2
+
b
4
1
+
b
c
+
b
2
c
2
1
+
a
c
+
a
2
c
2
1
+
b
c
+
b
2
c
2
1
+
c
2
+
c
4
|
i
s
e
q
u
a
l
t
o
Report Question
0%
(
a
+
b
+
c
)
6
0%
(
a
−
b
)
2
(
b
−
c
)
2
(
c
−
a
)
2
0%
4 (a-b)(b-c)(c-a)
0%
None of these
If in the determinant
Δ
=
|
a
1
b
1
c
1
a
2
b
2
c
2
a
3
b
3
c
3
|
,
A
1
,
B
1
,
C
1
etc., be the co-factors of
a
1
,
b
1
,
c
1
etc., then which of the following relations is incorrect?
Report Question
0%
a
1
A
1
+
b
1
B
1
+
c
1
C
1
=
Δ
0%
a
2
A
2
+
b
2
B
2
+
c
2
C
2
=
Δ
0%
a
3
A
3
+
b
3
B
3
+
c
3
C
3
=
Δ
0%
a
1
A
2
+
b
1
B
2
+
c
1
C
2
=
Δ
Explanation
Expand determinant in terms of the elements of any row.
Given,
⇒
Δ
=
|
a
1
b
1
c
1
a
2
b
2
c
2
a
3
b
3
c
3
|
⇒
A
1
,
B
1
,
C
1
etc. be the co-factors of
a
1
,
b
1
,
c
1
etc.
Now,
Sum of the product of element of a row with their co-factor is equal to the value of the determinant.
So,
For
1
s
t
row,
a
1
A
1
+
b
1
B
1
+
c
1
C
1
=
Δ
Similarly, for
2
n
d
and
3
r
d
row, it will be
⇒
a
2
A
2
+
b
2
B
2
+
c
2
C
2
=
Δ
⇒
a
3
A
3
+
b
3
B
3
+
c
3
C
3
=
Δ
Therefore, the incorrect relation is
a
1
A
2
+
b
1
B
2
+
c
1
C
2
=
Δ
.
Hence, the correct option is (D).
Let
A
=
[
1
0
0
2
1
0
3
2
1
]
a
n
d
U
1
,
U
2
,
U
3
be column matrices satisfying
A
U
1
=
[
1
0
0
]
,
A
U
2
=
[
2
3
6
]
,
A
U
3
=
[
2
3
1
]
. If U is
3
×
3
matrix, whose columns are
U
1
,
U
2
,
U
3
. then |U| is
Report Question
0%
−
11
0%
−
3
0%
3
2
0%
2
|
1
+
x
1
1
1
1
+
y
1
1
1
1
+
z
|
=
Report Question
0%
x
y
z
(
1
x
+
1
y
+
1
z
)
0%
x
y
z
0%
1
+
1
x
+
1
y
+
1
z
0%
1
x
+
1
y
+
1
z
If
△
r
=
|
2
r
−
1
2.
3
r
−
1
4.
5
r
−
1
x
y
z
2
n
−
1
3
n
−
1
5
n
−
1
|
, then
n
∑
r
=
1
(
△
r
)
is equal to
Report Question
0%
x
y
z
0%
1
0%
−
1
0%
0
|
a
2
+
2
a
2
a
+
1
1
2
a
+
1
a
+
2
1
3
3
1
|
=
Report Question
0%
(
a
−
1
)
2
0%
(
a
−
1
)
3
0%
(
a
−
1
)
4
0%
2
(
a
−
1
)
Let k be a positive real number and let
A =
[
2
k
−
1
2
√
k
2
√
k
2
√
k
1
−
2
k
−
2
√
k
2
k
−
1
]
B =
[
0
2
k
−
1
√
k
1
−
2
√
k
0
−
2
k
2
√
k
−
√
k
0
]
If
d
e
t
(
A
d
j
(
A
)
)
+
d
e
t
(
A
d
j
(
B
)
)
= 2 then [k] is equal to
Report Question
0%
4
0%
6
0%
0
0%
1
If
θ
ε
R
,
then the determinant
Δ
=
|
sin
θ
cos
θ
sin
2
θ
sin
(
θ
+
2
π
3
)
cos
(
θ
+
2
π
3
)
sin
(
2
θ
+
4
π
3
)
sin
(
θ
−
2
π
3
)
cos
(
θ
−
2
π
3
)
sin
(
2
θ
−
4
π
3
)
|
=
Report Question
0%
−
sin
θ
−
cos
θ
0%
sin
2
θ
0%
1
+
sin
2
θ
−
cos
2
θ
0%
N
o
n
e
o
f
t
h
e
s
e
If
θ
ϵ
R
, then the
d
e
t
e
r
m
i
n
a
n
t
Δ
=
|
sin
θ
cos
θ
sin
2
θ
sin
(
θ
+
2
π
3
)
cos
(
θ
+
2
π
3
)
sin
(
2
θ
+
2
π
3
)
sin
(
θ
−
2
π
3
)
cos
(
θ
−
2
π
3
)
sin
(
2
θ
−
2
π
3
)
|
=
Report Question
0%
−
sin
θ
−
cos
θ
0%
sin
2
θ
0%
1
+
sin
2
θ
−
cos
2
θ
0%
None of these
Solve
Δ
=
|
√
13
+
√
3
2
√
5
√
5
√
15
+
√
26
5
√
10
3
+
√
65
√
15
5
|
=
Report Question
0%
15
√
2
−
25
√
3
0%
25
√
3
−
15
√
2
0%
3
√
5
0%
−
15
√
2
+
7
√
3
Let
[
cos
−
1
x
cos
−
1
y
cos
−
1
z
cos
−
1
y
cos
−
1
z
cos
−
1
x
cos
−
1
z
cos
−
1
x
cos
−
1
y
]
such that
|
A
|
=
0
, then maximum value of
x
+
y
+
z
is
Report Question
0%
3
0%
0
0%
1
0%
2
Matrix
A
=
|
x
3
2
1
y
4
2
2
z
|
, if
x
y
z
=
60
and
8
x
+
4
y
+
3
z
=
20
, then
a
(
a
d
j
A
)
is equal to
Report Question
0%
|
64
0
0
0
64
0
0
0
64
|
0%
|
88
0
0
0
88
0
0
0
88
|
0%
|
68
0
0
0
68
0
0
0
68
|
0%
|
34
0
0
0
34
0
0
0
34
|
The number of distinct values of a
2
×
2
determinant whose entries are from set
{
−
1
,
0
,
1
}
is
Report Question
0%
4
0%
6
0%
5
0%
3
f
(
x
)
=
|
x
−
2
(
x
−
1
)
2
x
3
x
−
1
x
2
(
x
+
1
)
3
x
(
x
+
1
)
2
(
x
+
2
)
3
|
Report Question
0%
0
0%
2
0%
−
2
0%
None of these
If
(
ω
≠
1
)
is a cubic root of unity then
|
1
1
+
i
+
ω
2
ω
2
1
−
i
−
1
ω
2
−
1
−
i
−
1
+
ω
−
i
−
1
|
equals-
Report Question
0%
0
0%
1
0%
i
0%
ω
If A is a square matrix of order 3, then
|
A
d
j
(
A
d
j
A
2
)
|
=
Report Question
0%
|
A
|
2
0%
|
A
|
4
0%
|
A
|
8
0%
|
A
|
16
If
1
,
ω
,
ω
2
are the roots of unity then
△
=
|
1
ω
n
ω
2
n
ω
n
ω
2
n
1
ω
2
n
1
ω
n
|
is equal to-
Report Question
0%
0
0%
1
0%
ω
0%
ω
2
If
|
A
|
denotes the value of the determinant of the square matrix
A
order
3
, then
|
−
2
A
|
=
Report Question
0%
−
8
|
A
|
0%
8
|
A
|
0%
−
2
|
A
|
0%
None of these
f
(
x
)
=
|
2
cos
x
1
0
x
−
π
2
2
cos
x
1
0
1
2
cos
x
|
⇒
f
′
(
x
)
=
Report Question
0%
0
0%
2
0%
π
/
2
0%
π
−
6
State whether the statement is true/false.
If
A
(
x
)
=
[
cos
x
−
sin
x
0
sin
x
cos
x
0
0
0
1
]
, then adj
[
A
(
x
)
]
=
A
(
−
x
)
.
Report Question
0%
True
0%
False
If
a
+
b
+
c
=
0
one root of
|
a
−
x
c
b
c
b
−
x
a
b
a
c
−
x
|
=0 is
Report Question
0%
x
=
1
0%
x
=
2
0%
x
=
a
2
+
b
2
+
c
2
0%
x
=
0
If a matrix
[
(
x
−
a
)
2
(
x
−
b
)
2
(
x
−
c
)
2
(
y
−
a
)
2
(
y
−
b
)
2
(
y
−
c
)
2
(
z
−
a
)
2
(
z
−
b
)
2
(
z
−
c
)
2
]
is a zero matrix, then
a
,
b
,
c
,
x
,
y
,
z
are connected by:
Report Question
0%
a
+
b
+
c
=
0
,
x
+
y
+
z
=
0
0%
a
+
b
+
c
=
0
,
x
=
y
=
z
0%
a
=
b
=
c
,
x
+
y
+
z
=
0
0%
None of these
If
|
x
2
x
x
2
x
0
x
x
8
|
=
A
x
4
+
B
x
3
+
c
x
2
+
D
x
+
E
, then the value of
5
A
+
4
B
+
2
C
+
2
D
+
E
is equal to
Report Question
0%
−
11
0%
17
0%
−
17
0%
0
The maximum and minimum values of
(
3
×
3
)
determinant whose elements belong to
{
0
,
1
,
2
,
3
}
is
Report Question
0%
±
9
0%
±
15
0%
±
54
0%
±
32
The value of
|
1
1
1
(
2
x
+
2
−
x
)
2
(
3
x
+
3
−
x
)
2
(
5
x
+
5
−
x
)
2
(
2
x
−
2
−
x
)
2
(
3
x
−
3
−
x
)
2
(
5
x
−
5
−
x
)
2
|
is equal to
Report Question
0%
0
0%
30
x
0%
30
−
x
0%
N
o
n
e
o
f
t
h
e
s
e
If the points
A
(
x
,
2
)
,
B
(
−
3
,
−
4
)
and
C
(
7
,
−
5
)
are collinear, then the value of
x
is :
Report Question
0%
−
63
0%
63
0%
60
0%
−
60
Explanation
Given points are
A
(
x
,
2
)
B
(
−
3
,
−
4
)
C
(
7
,
−
5
)
(
x
1
,
y
1
)
=
(
x
,
2
)
,
(
x
2
,
y
2
)
=
(
−
3
,
−
4
)
(
x
3
,
y
3
)
=
(
7
,
−
5
)
x
1
[
y
2
−
y
3
]
+
x
2
[
y
3
−
y
1
]
+
x
3
[
y
1
−
y
2
]
=
0
x
[
(
−
4
)
−
(
−
5
)
]
+
(
−
3
)
[
(
−
5
)
−
2
]
+
7
[
2
−
(
−
4
)
]
=
0
x
(
−
4
+
5
)
−
3
(
−
5
−
2
)
+
7
(
2
+
4
)
=
0
x
(
1
)
−
3
(
−
7
)
+
7
(
6
)
=
0
x
+
21
+
42
=
0
x
+
63
=
0
x
=
−
63
∴
The value of x is
-63
.
The determinant
\left| \begin{matrix} a & b & a\alpha +b \\ b & c & b\alpha +c \\ a\alpha +b & b\alpha +c & 0 \end{matrix} \right|
is equal to zero, if
Report Question
0%
a,b,c
are in A.P.
0%
a,b,c
are in G.P.
0%
a,b,c
are in H.P.
0%
None of these
The determinant
\Delta=\left| \begin{matrix} { a }^{ 2 }\left( 1+x \right) & ab & ac \\ ab & { b }^{ 2 }\left( 1+x \right) & bc \\ ac & bc & { c }^{ 2 }\left( 1+x \right) \end{matrix} \right|
is divisible by
Report Question
0%
1+x
0%
(1+x)^{2}
0%
x^{2}
0%
none\ of\ these
If
A=\begin{bmatrix} 2 & 1 & -1 \\ 0 & 1 & 4 \\ 0 & 0 & 3 \end{bmatrix}
, then
tr(adj(adj\ A))
is equal to
Report Question
0%
18
0%
24
0%
36
0%
48
Which of the following is/are true ?
(i) Adjoint of a symmetric matrix is symmetric
(ii) Adjoint of a unit matrix is a unit matrix
(iii) A(adj A)=(adj A) A= [A]f and
(iv) Adjoint of a diagonal matrix is a diagonal matrix
Report Question
0%
(i)
0%
(ii)
0%
(iii) and (iv)
0%
None
of
these
If
A=\begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}
, then the value of
|A||adj A|
is
Report Question
0%
a^{9}
0%
a^{5}
0%
a^{6}
0%
a^{27}
If
A=\left[ \begin{matrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{matrix} \right]
, then
det(adj(adj A))
Report Question
0%
(14)^{4}
0%
(14)^{3}
0%
(14)^{2}
0%
(14)^{1}
A=\begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix}
and A (adj A)=KI, then the value of 'K' is ...
Report Question
0%
2
0%
-2
0%
10
0%
-10
Let
P\left( x \right) =\begin{vmatrix} x & -3+4i & 3-4i \\ x & -7i & 5+6i \\ x & 7-2i & -7-2i \end{vmatrix}
The number of values of x for which
P\left( x \right) =0
is
Report Question
0%
0
0%
1
0%
2
0%
3
Let
f\left( x \right) = {\sin ^{ - 1}}\left( {\tan x} \right) + {\cos ^{ - 1}}\left( {\cot x} \right)
then
Report Question
0%
f(x)= \frac {\pi}{2}
wherever defined
0%
domain of
f(x)
is
x= n \pi \pm \frac {\pi}{4}, n \in 1
0%
period
f(x)
is
\frac {\pi}{2}
0%
f(x)
in many one function
If
A = \begin{bmatrix} 4 & 2 \\ 3 & 4 \end{bmatrix}
then |adj A| is equal to
Report Question
0%
16
0%
10
0%
6
0%
none of these
Let
A
be a non-singular matrix of order
n
nad
\left|A\right|=K
, then
\left(adj A\right)^{-1}
is
Report Question
0%
\dfrac{A}{K}
0%
K^{n-1}\left(adj A\right)
0%
K^{n-2}A
0%
KA
Which of the following values of
\alpha
satisfy the equation
\left| \begin{array}{ll} { (1+\alpha )^{ { 2 } } } & { (1+2\alpha )^{ { 2 } } } & { (1+3\alpha )^{ { 2 } } } \\ { (2+\alpha )^{ { 2 } } } & { (2+2\alpha )^{ { 2 } } } & { (2+3\alpha )^{ { 2 } } } \\ { (3+\alpha )^{ { 2 } } } & { (3+2\alpha )^{ { 2 } } } & { (3+3\alpha )^{ { 2 } } } \end{array} \right| =-648\alpha
?
Report Question
0%
-4
0%
9
0%
-9
0%
4
Let
A =[a_{ij}]
be a
3 \times 3
matrix whose determinant is
5
. Then the determinant of the matrix
B = [ 2^{i-j} a_{ij} ]
is
Report Question
0%
5
0%
10
0%
20
0%
40
If
A = \begin{bmatrix}1 & -1 & 2\\ 3 & 0 & -2\\ 1 & 0 & 3\end{bmatrix}
, value of
|A(adj \,A)|
:
Report Question
0%
11
0%
11^2
0%
11^3
0%
-11
If
\left[ \begin{matrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{matrix} \right]
then
|adj\ (adj\ A)|
is equal to
Report Question
0%
18^{3}
0%
18^{2}
0%
18^{4}
0%
18^{6}
If
A=\begin{bmatrix} 1 & -2 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}
, then
A.adj(a)=
Report Question
0%
\begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}
0%
\begin{bmatrix} 5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5 \end{bmatrix}
0%
\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
0%
\begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix}
If
A
is a square matrix of order
n
and
|A|=D
and
|adj A|=D^{\prime}
, then
Report Question
0%
DD^{\prime}=D^{2}
0%
DD^{-1}=D^{-1}
0%
DD^{\prime}=D^{n-1}
0%
DD^{\prime}=D^{n}
If the points (k, 2 - 2k) (1 - k, 2k) and (-k -4, 6 -2x) be collinear the possible values of k are
Report Question
0%
-
\dfrac{1}{2}
0%
\dfrac{1}{2}
0%
1
0%
- 1
Explanation
Given three points
(K,2-2K)
(1-K,2K)
(-K-4,6-2K)
Noe three points
\left( { x }_{ 1 },{ y }_{ 1 } \right) \left( { x }_{ 2 },{ y }_{ 2 } \right) \left( { x }_{ 3 },{ y }_{ 3 } \right)
will be collinear
if
\Rightarrow \left[ { x }_{ 1 }\left( { y }_{ 2 }-{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 }-{ y }_{ 1 } \right) +{ x }_{ 3 }\left( { y }_{ 1 }-{ y }_{ 2 } \right) \right] =0\quad \longrightarrow \left( 1 \right)
Putting
{ x }_{ 1 }=K;{ y }_{ 1 }=2-2K
{ x }_{ 2 }=1-K;{ y }_{ 2 }=2K
{ x }_{ 3 }=-K-4;{ y }_{ 3 }=6-2K
in the equation
(1)
we get
\Rightarrow K\left( 2K-6+2K \right) +\left( 1-K \right) \left( 6-2K-2+2K \right) +\left( K-4 \right) \left( 2-2K-2K \right) =0
\Rightarrow K\left( 4K-6 \right) +\left( 1-K \right) \left( 4 \right) +\left( -K-4 \right) \left( 2-4K \right) =0
\Rightarrow { 4K }^{ 2 }-6K+4-4K-\left( 2K-{ 4K }^{ 2 }+8-16K \right) =0
\Rightarrow { 4K }^{ 2 }-6K+4-4K-2K+{ 4K }^{ 2 }-8+16K=0
\Rightarrow { 8K }^{ 2 }+4K-4=0
\Rightarrow { 2K }^{ 2 }+K-1=0
\Rightarrow { 2K }^{ 2 }+2K-K-1=0
\Rightarrow 2K\left( K+1 \right) -1\left( K+1 \right) =0
\Rightarrow \left( 2K-1 \right) \left( K+1 \right) =0
\therefore
K=1/2,-1
[option B, option D]
If
A=\begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}
, then
adj(3A^{2}+12A)
is equal to:
Report Question
0%
\begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix}
0%
\begin{bmatrix} 72 & -84 \\ -63 & 51 \end{bmatrix}
0%
\begin{bmatrix} 51 & 63 \\ 84 & 72 \end{bmatrix}
0%
\begin{bmatrix} 51 & 84 \\ 63 & 72 \end{bmatrix}
Let
{\Delta _{\text{o}}} =
\left[ \begin{matrix} { a }_{ 11 } & { a }_{ 12 } & { a }_{ 13 } \\ { a }_{ 21 } & { a }_{ 22 } & { a }_{ 23 } \\ { a }_{ 31 } & { a }_{ 32 } & { a }_{ 33 } \end{matrix} \right]
and let
{\Delta _1}
denote the determinant formed by the cofactors of elements of
{\Delta _0}
and
{\Delta _2}
denote the determinant formed by the cofactor of
{\Delta _1},
similarly
{\Delta _n}
denotes the determinant formed by the cofactors of
{\Delta _{n - 1}}
then the determinant value of
{\Delta _n}
is
Report Question
0%
{\Delta _0}^{2n}\;
0%
{\Delta _0}^{{2^n}}\;
0%
{\Delta _0}^{{n^2}}\;
0%
{\Delta ^2}_0\;
Explanation
Let
A
be a matrix of order
m\times m
and
C
be its co-factor matrix
We know that
A.adj{\left(A\right)}=\left|A\right|.I
\Rightarrow\,\left|A\right|\left|adj{\left(A\right)}\right|={\left|A\right|}^{m}.\left|I\right|
\Rightarrow\,\left|A\right|\left|adj{\left(A\right)}\right|={\left|A\right|}^{m}
......
(1)
since
\left|I\right|=1
But
adj{\left(A\right)}={C}^{T}
\therefore\,\left|adj{\left(A\right)}\right|=\left|{C}^{T}\right|=\left|C\right|
.......
(2)
since
\left|C\right|=\left|{C}^{T}\right|
From
(1)
and
(2)
we have
\left|A\right|\left|C\right|={\left|A\right|}^{m}
\Rightarrow\,\left|C\right|={\left|A\right|}^{m-1}
Let
{\Delta}_{i}
be the cofactor matrix then
{\Delta}_{i}={\left({\Delta}_{i-1}\right)}^{m-1}
where
m=3
\Rightarrow\,{\Delta}_{i}={\left({\Delta}_{i-1}\right)}^{3-1}
\Rightarrow\,{\Delta}_{i}={\left({\Delta}_{i-1}\right)}^{2}
\Rightarrow\,{\Delta}_{n}={\left({\Delta}_{n-1}\right)}^{2}={\left({\left({\Delta}_{n-2}\right)}^{2}\right)}^{2}={\left({\left({\left({\Delta}_{n-3}\right)}^{2}\right)}^{2}\right)}^{2}
and so on.
\Rightarrow\,{\Delta}_{n-1}={\left({\Delta}_{n-2}\right)}^{2}
\Rightarrow\,{\Delta}_{n-2}={\left({\Delta}_{n-3}\right)}^{2}
and so on.
Hence
{\Delta}_{0}={\left({\Delta}_{0}\right)}^{{2}^{n}}
P = \left[ {\begin{array}{*{20}{c}}1&\alpha &3\\1&3&3\\2&4&4\end{array}} \right]
is the adjoint of a
3 \times 3
matrix A and
\left| A \right| = 4,
then
\alpha
is equal to
Report Question
0%
4
0%
11
0%
5
0%
0
If
A = \left( \begin{array} { l l } { 1 } & { 2 } \\ { 3 } & { 5 } \end{array} \right),
then the value of the determinant
\left| A ^ { 2009 } - 5 A ^ { 2008 } \right|
is
Report Question
0%
- 6
0%
- 5
0%
- 4
0%
4
0%
6
If
A=\begin{bmatrix} { a }_{ 1 } & { a }_{ 2 } & { a }_{ 3 } \\ { b }_{ 1 } & { b }_{ 2 } & { b }_{ 3 } \\ { c }_{ 1 } & { c }_{ 2 } & { c }_{ 3 } \end{bmatrix}
and
A_i,B_i,C_i
are cofactors of
a_i,b_i,c_i
then
a_1B_1+a_2B_2+a_3B_3=
Report Question
0%
0
0%
|A|
0%
|A|^2
0%
2|A|
0:0:2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page