CBSE Questions for Class 12 Commerce Maths Determinants Quiz 2 - MCQExams.com

If two rows of a determinant are identical, then what is the value of the determinant ?
  • 0
  • 1
  • -1
  • Can be any real value.
The value of k for which $$kx+3y-k+3=0$$ and $$12x+ky=k$$, have infinite solutions, is?
  • $$0$$
  • $$-6$$
  • $$6$$
  • $$1$$
The number of line segments possible with three collinear points is ________.
  • $$1$$
  • $$2$$
  • $$3$$
  • Infinite
For positive numbers $$x, y$$ and $$z$$ the numerical value of the determinant $$\begin{vmatrix} 1 & \log_x y & \log_x z \\ \log_y x & 1 & \log_y z \\ \log_z x & \log_z y & 1 \end{vmatrix}$$ is
  • $$0$$
  • $$1$$
  • $$\log_e  xyz$$
  • $$-\log_{e}  xyz$$
If any two adjacent rows or columns of a determinant are interchanged in position, the value of the determinant :
  • Becomes zero
  • Remains the same
  • Changes its sign
  • Is doubled
If $$a, b, c$$ are non-zero and different from $$1$$, then the value of $$\begin{vmatrix}\log_a 1 & \log_a b & \log_ac\\ \log_a \left( \dfrac{1}{b} \right ) & \log_b 1 &\log_a \left( \dfrac{1}{c} \right ) \\ \log_a \left( \dfrac{1}{c}\right ) & \log_a c & \log_c 1\end{vmatrix}$$ is
  • $$0$$
  • $$1 + \log_a (a +b + c)$$
  • $$\log_a (ab + bc + ca)$$
  • $$1$$
  • $$\log_a(a + b + c)$$
The points (2, -3), (4,3) and (5, k/2) are on the same straight line. The value(s) of k is (are):
  • $$12$$
  • $$-12$$
  • $$\pm 12$$
  • $$12$$ or $$6$$
 Let a be the  square  matrix  of  order  2 such  that $$A^2 - 4A + 4I  =0$$ where  I is an  identify  matrix  of order .If$$ B = A ^5 - 4A^4 + 6 A^3 +  4A^2 + A $$ then  Det (B)  is equal to
  • 162
  • $$(162)^2$$
  • 256
  • $$(256)^2$$
If $$A$$ is a skew symmetric matrix, then $$\left| A \right| $$ is
  • $$1$$
  • $$-1$$
  • $$0$$
  • none
The point $$(-a,-b),(0,0),(a,b)$$ and $$(a^{2},ab)$$ are-
  • collinear
  • concyclic
  • vertices of a rectangle
  • vertices of a parallelogram
Let $$\omega\neq{1}$$ be a cube root of unity and $$S$$ be the set of all non-singular matrices of the form $$ \begin{bmatrix} 1 & a & b \\ \omega  & 1 & c \\ { \omega  }^{ 2 } & \omega  & 1 \end{bmatrix}$$Where each of $$a,\ b$$ and $$c$$ is either $$\omega$$ or $${\omega}^{2}$$. Then the number of distinct matrices in the set $$S$$ is 
  • $$2$$
  • $$6$$
  • $$4$$
  • $$8$$
$$A=\begin{bmatrix} 5 & 5a & a \\ 0 & a & 5a \\ 0 & 0 & 5 \end{bmatrix}$$ If $$\left| A^{ 2 } \right| =25$$ then $$|a|=$$
  • $$5$$
  • $$5^{2}$$
  • $$1$$
  • $$\dfrac{1}{5}$$
If $$a\neq6,b,c$$ satisfy $$\begin{vmatrix}  a&2b&2c  \\ 3&b&c \\ 4&a&b \end{vmatrix}=0,$$ then $$abc =$$ 
  • $$a+b+c$$
  • $$0$$
  • $$b^{3}$$
  • $$ab +b -c$$
The value of (adj $$A$$) is equal to
  • $$2A$$
  • $$4A$$
  • $$8A$$
  • $$16A$$
Two points $$(a, 0)$$ and $$(0, b)$$ are joined by a straight line. Another point on this line is
  • $$(3a, -2b)$$
  • $$({a}^{2}, ab)$$
  • $$(-3a, 2b)$$
  • $$(a, b)$$
$$\begin{vmatrix} x & y & z  \\ x^2 & y^2 & z^2 \\ x^3 & y^3 & z^3 \end{vmatrix} =xyz(x-y)(y-z)(z-x)$$
  • True
  • False
$$\begin{vmatrix} 2^3 & 3^3 & 3.2^2+3.2+1\\ 3^3 & 4^3 & 3.3^2+3.3+1\\ 4^3 & 5^3 & 3.4^2+3.4+1\end{vmatrix}$$ is equal to?
  • $$0$$
  • $$1$$
  • $$92$$
  • None of these
The determinant $$\left| {\begin{array}{*{20}{c}}a&b&{a\alpha  + b}\\b&c&{b\alpha  + c}\\{a\alpha  + b}&{b\alpha  + c}&0\end{array}} \right|$$ is equal to zero, if-

  • $$a, b, c$$ are in AP
  • $$a, b, c$$ are in GP
  • $$\alpha $$ is a root of the equation $$a{x^2} + bx + c = 0$$
  • $$\left( {x - \alpha } \right)$$ is a factor of $$a{x^2} + 2bx + c$$
$$A = \left[ \begin{array}{l}1\,\,\,\,\,\,\,\,1\\3\,\,\,\,\,\,\,4\end{array} \right]$$ and $$A\left( {adj\,A} \right) = KI$$, then the value of $$'K'$$
  • $$1$$
  • $$-2$$
  • $$10$$
  • $$-10$$
$$D=\begin{vmatrix} 18 & 40 & 89 \\ 40 & 89 & 198 \\ 89 & 198 & 440 \end{vmatrix}=$$
  • $$1$$
  • $$-1$$
  • zero
  • $$2$$
First row of the matrix $$A$$ is $$\begin{bmatrix}1& 3 & 2\end{bmatrix}$$. If $$adj (A)$$ =\begin{bmatrix}-2 & 4 & a\\ -1& 2 & 1\\ 3a& -5 &-2 \end{bmatrix} then a possible value of $$det(A)$$ is
  • $$1$$
  • $$2$$
  • $$-1$$
  • $$-2$$
If $$P=\begin{bmatrix} 1 & \alpha & 3\\ 1 & 3 & 3\\ 2 & 4 & 4\end{bmatrix}$$ is a $$3\times 3$$ matrix A and $$|A|=4$$, then $$\alpha$$ is equal to?
  • $$4$$
  • $$11$$
  • $$5$$
  • $$0$$
The value of determinant $$ \begin{vmatrix} 19 & 6 & 7 \\ 21 & 3 & 15 \\ 28 & 11 & 6 \end{vmatrix} $$ is :
  • $$ 150 $$
  • $$-110$$
  • $$0$$
  • None of these
$$\left| \begin{matrix} 1+i & 1-i & i \\ 1+i & i & 1+i \\ i & 1+i & 1-i \end{matrix} \right| $$ (where $$i=\sqrt {-1}$$) equals.
  • $$5i-2$$
  • $$7 4i$$
  • $$4 7i$$
  • $$48i$$
If $$A=\left[ \begin{matrix} 0 & 1 \\ -1 & 0 \end{matrix} \right] $$ then determinant of $$[A]$$ is
  • $$1$$
  • $$-1$$
  • $$0 $$
  • $$2$$
`If $$(8,1),(k,-4),(2,-5)$$ are collinaer, then $$k=$$
  • $$1$$
  • $$2$$
  • $$3$$
  • $$4$$
If $$A=\begin{bmatrix} 5 & 1 \\ 2 & 3 \end{bmatrix}$$, the determinant of matrix $$A$$ is
  • $$13$$
  • $$12$$
  • $$17$$
  • $$-13$$
Find the determinant:
$$\begin{vmatrix} 1 & 2 & 1 \\ 2 & 2 & 2 \\ 3 & 1 & 4 \end{vmatrix}$$
  • $$-2$$
  • $$0$$
  • $$3$$
  • $$1$$
$$\left| \begin{matrix} 1& a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{matrix} \right| =$$
  • $$(a-b)(b-c)(c-a)$$
  • $$(a+b)(c-a)$$
  • $$(a+b+c)^2$$
  • $$2(a+b+c)^2$$
If the points $$(a, 1), (2, -1)$$ and $$\left(\dfrac{1}{2}, 2\right)$$ are collinear, then $$a$$ is equal to:
  • $$1$$
  • $$0$$
  • $$2$$
  • $$\dfrac{1}{4}$$
If $$\displaystyle A = \begin {vmatrix} \dfrac{1}{2}\left ( e^{\alpha} + e^{\alpha} \right ) & \dfrac{1}{2}\left ( e^{\alpha} e^{\alpha} \right ) \\ \dfrac{1}{2}\left ( e^{\alpha} e^{\alpha} \right ) & \dfrac{1}{2}\left ( e^{\alpha} + e^{\alpha} \right ) \end {vmatrix} $$  then $$A^{1}$$ exists
  • For all real $$\alpha$$
  • For positive real $$\alpha$$ only
  • For negative real $$\alpha$$ only
  • None of these
What is the value of the determinant
$$\begin{vmatrix}  1!& 2! &  3!\\ 2! & 3! & 4! \\  3!&  4!&  5!\end{vmatrix}$$$$?$$
  • $$0$$
  • $$12$$
  • $$24$$
  • $$36$$
lf $$\mathrm{A}=\left[\begin{array}{lll}
1 & 5 & -6\\
-8 & 0 & 4\\
3 & -7 & 2
\end{array}\right]$$, then the cofactor of -7=...... 

  • 44
  • 43
  • 40
  • 39
The vectorial angle of a point $$P$$ on the line joining the points $$(r_{1}, \theta _{1})$$ and $$(r_{2},\theta _{2})$$ is $$\dfrac{\theta_{1} +\theta _{2}}{2}$$ then the length of radius vector of $$P$$ is
  • $$\displaystyle \frac{r_{1} - r_{2}}{r_{1} + r_{2}} \cos (\frac{\theta _{1} - \theta _{2}}{2})$$
  • $$\displaystyle \frac{r_{1} + r_{2}}{r_{1} r_{2}} \cos (\frac{\theta _{1} - \theta _{2}}{2})$$
  • $$\displaystyle \frac{r_{1} r_{2}}{r_{1} + r_{2}} \cos (\frac{\theta _{1} - \theta _{2}}{2})$$
  • None of these
If the entries in a $$3\times 3$$ determinant are either $$0$$ or 1, then the greatest value of their determinats is:
  • 1
  • 2
  • 3
  • 9
If $$A+B+C= \pi$$, then $$ \displaystyle \left| \begin{matrix} \tan { \left( A+B+C \right)  }  & \tan { B }  & \tan { C }  \\ \tan { (A+C) }  & 0 & \tan { A }  \\ \tan { (A+B) }  & -\tan { A }  & 0 \end{matrix} \right| $$ is equal to
  • $$0$$
  • $$1$$
  • $$\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{A}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{B}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{C}$$
  • $$-2$$
The value of $$\left|\begin{array}{ll}
2+i & 2-i\\
1+i & 1-i
\end{array}\right|$$ is:
  • $$\mathrm{A}$$ complex quantity
  • real quantity
  • $$0$$
  • cannot be determined
$$I\mathrm{f}\mathrm{A}=\left[\begin{array}{ll}
1 & 3\\
2 & 1
\end{array}\right]$$, then the determinant $$\mathrm{A}^{2}-2\mathrm{A}$$:
  • $$5$$
  • $$25$$
  • $$-5$$
  • $$-25$$
$$\left|\begin{array}{llll}
1 & & \mathrm{l}\mathrm{o}\mathrm{g}_{b}a\\
\mathrm{l}\mathrm{o}\mathrm{g}_{a}b & 1 &
\end{array}\right|$$ =....
  • $$ab

    $$
  • $$\mathrm{b}\mathrm{a}$$
  • $$\mathrm{a}\mathrm{b}$$
  • $$0$$
lf $$\left|\begin{array}{lll}
a+x & a-x & a-x\\
a-x & a+x & a-x\\
a-x & a-x & a+x
\end{array}\right|=0$$ then the non-zero value of x=............ 
  • $$a$$
  • $$3a$$
  • $$2a$$
  • $$4a$$
lf $$\left|\begin{array}{lll}
1 & 2 & x\\
4 & -1 & 7\\
2 & 4 & -6
\end{array}\right|$$ is a singular matrix, then $$x$$ is equal to 
  • $$0$$
  • $$1$$
  • $$-3$$
  • $$3$$
If $$A=\left[\begin{array}{lll}
1^{2} & 2^{2} & 3^{2}\\
2^{2} & 3^{2} & 4^{2}\\
3^{2} & 4^{2} & 5^{2}
\end{array}\right]$$, then the minor of $$\mathrm{a}_{22}$$ is
  • $$-56$$
  • $$51$$
  • $$-43$$
  • $$41$$
$$\begin{vmatrix}
1 &4 &20 \\
1 & -2& 5\\
1 &2x & 5x^{2}
\end{vmatrix}=0$$ find x
  • -1, 2
  • 0,1
  • 1, 3
  • 2, 0
If a, b, c are all positive and not all equal then the value of the determinant $$\begin{bmatrix}
a & b & c\\
b & c &a \\
c & a & b
\end{bmatrix}$$ is 
  • 0
  • < 0
  • > 0
  • cannot be determined
$$\left|\begin{array}{lll}
\mathrm{a}+\mathrm{b} & \mathrm{a} & \mathrm{b}\\
\mathrm{a} & \mathrm{a}+\mathrm{c} & \mathrm{c}\\
\mathrm{b} & \mathrm{c} & \mathrm{b}+\mathrm{c}
\end{array}\right|=$$
  • 4 abc
  • abc
  • $$2\mathrm{a}^{2}\mathrm{b}^{2}\mathrm{c}^{2}$$
  • $$4\mathrm{a}^{2}\mathrm{b}^{2}\mathrm{c}^{2}$$
Adj $$\left ( Adj\begin{bmatrix}
2 &-3 \\
4& 6
\end{bmatrix} \right )=$$ 
  • $$\begin{bmatrix}

    2 & -3\\

    4& 6

    \end{bmatrix}$$
  • $$\begin{bmatrix}

    6& 3\\

    -4& 2

    \end{bmatrix}$$
  • $$\begin{bmatrix}

    -6& 3\\

    -4& -2

    \end{bmatrix}$$
  • $$\begin{bmatrix}

    -6& -3\\

    4& -2

    \end{bmatrix}$$
A= $$\begin{bmatrix}
3 & 0 & 0\\
0& 3 & 0\\
0& 0 & 3
\end{bmatrix}$$ ,then Adj ( A)
  • 3A
  • 6A
  • $$9A^{T}$$
  • $$2A^{T}$$
$$\left[\begin{array}{llll}
\mathrm{c}\mathrm{o}\mathrm{s}\alpha+\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{n}\alpha & \mathrm{c}\mathrm{o}\mathrm{s}\beta+\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{n}\beta\\
\mathrm{s}\mathrm{i}\mathrm{n}\beta+\mathrm{i}\mathrm{c}\mathrm{o}\mathrm{s}\beta\ & \mathrm{s}\mathrm{i}\mathrm{n}\alpha+\mathrm{i}\mathrm{c}\mathrm{o}\mathrm{s}\alpha &
\end{array}\right]$$ is
  • 2 $$\cos\alpha$$
  • 2 $$\sin\beta$$
  • $$0$$
  • $$1$$
If $$\mathrm{A}$$ is an unitary matrix then $$|A|$$ is equal to:
  • $$1$$
  • $$-1$$
  • $$\pm 1$$
  • $$2$$
If A =$$\begin{bmatrix}
0 &1 & 2\\
1& 2 & 3\\
3 & 1 & 1
\end{bmatrix}$$ then Adj (A) = 
  • $$\begin{bmatrix}-1 &+8 & -5\\ 1& -6 & 3\\ -1 & 2 & -1\end{bmatrix}$$
  • $$\begin{bmatrix}-1 &+1 & -1\\ 8& -6 & 2\\ -5 & 3 & -1\end{bmatrix}$$
  • $$\begin{bmatrix}1 &-1 & 1\\ 8& -6 & 2\\ -5 & 3 & -1\end{bmatrix}$$
  • $$\begin{bmatrix}-1 &-8 & 5\\ -1& 6 & -3\\ 1 & -2 & 1\end{bmatrix}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers