Processing math: 100%

CBSE Questions for Class 12 Commerce Maths Determinants Quiz 2 - MCQExams.com

If two rows of a determinant are identical, then what is the value of the determinant ?
  • 0
  • 1
  • -1
  • Can be any real value.
The value of k for which kx+3yk+3=0 and 12x+ky=k, have infinite solutions, is?
  • 0
  • 6
  • 6
  • 1
The number of line segments possible with three collinear points is ________.
  • 1
  • 2
  • 3
  • Infinite
For positive numbers x,y and z the numerical value of the determinant |1logxylogxzlogyx1logyzlogzxlogzy1| is
  • 0
  • 1
  • logexyz
  • logexyz
If any two adjacent rows or columns of a determinant are interchanged in position, the value of the determinant :
  • Becomes zero
  • Remains the same
  • Changes its sign
  • Is doubled
If a,b,c are non-zero and different from 1, then the value of |loga1logablogacloga(1b)logb1loga(1c)loga(1c)logaclogc1| is
  • 0
  • 1+loga(a+b+c)
  • loga(ab+bc+ca)
  • 1
  • loga(a+b+c)
The points (2, -3), (4,3) and (5, k/2) are on the same straight line. The value(s) of k is (are):
  • 12
  • 12
  • ±12
  • 12 or 6
 Let a be the  square  matrix  of  order  2 such  that A24A+4I=0 where  I is an  identify  matrix  of order .IfB=A54A4+6A3+4A2+A then  Det (B)  is equal to
  • 162
  • (162)2
  • 256
  • (256)2
If A is a skew symmetric matrix, then |A| is
  • 1
  • 1
  • 0
  • none
The point (a,b),(0,0),(a,b) and (a2,ab) are-
  • collinear
  • concyclic
  • vertices of a rectangle
  • vertices of a parallelogram
Let ω1 be a cube root of unity and S be the set of all non-singular matrices of the form [1abω1cω2ω1]Where each of a, b and c is either ω or ω2. Then the number of distinct matrices in the set S is 
  • 2
  • 6
  • 4
  • 8
A=[55aa0a5a005] If |A2|=25 then |a|=
  • 5
  • 52
  • 1
  • 15
If a6,b,c satisfy |a2b2c3bc4ab|=0, then abc= 
  • a+b+c
  • 0
  • b3
  • ab+bc
The value of (adj A) is equal to
  • 2A
  • 4A
  • 8A
  • 16A
Two points (a,0) and (0,b) are joined by a straight line. Another point on this line is
  • (3a,2b)
  • (a2,ab)
  • (3a,2b)
  • (a,b)
|xyzx2y2z2x3y3z3|=xyz(xy)(yz)(zx)
  • True
  • False
|23333.22+3.2+133433.32+3.3+143533.42+3.4+1| is equal to?
  • 0
  • 1
  • 92
  • None of these
The determinant |abaα+bbcbα+caα+bbα+c0| is equal to zero, if-

  • a,b,c are in AP
  • a,b,c are in GP
  • α is a root of the equation ax2+bx+c=0
  • (xα) is a factor of ax2+2bx+c
A=[1134] and A(adjA)=KI, then the value of K
  • 1
  • 2
  • 10
  • 10
D=|184089408919889198440|=
  • 1
  • 1
  • zero
  • 2
First row of the matrix A is [132]. If adj(A) =[24a1213a52] then a possible value of det(A) is
  • 1
  • 2
  • 1
  • 2
If P=[1α3133244] is a 3×3 matrix A and |A|=4, then α is equal to?
  • 4
  • 11
  • 5
  • 0
The value of determinant |19672131528116| is :
  • 150
  • 110
  • 0
  • None of these
|1+i1ii1+ii1+ii1+i1i| (where i=1) equals.
  • 5i2
  • 74i
  • 47i
  • 48i
If A=[0110] then determinant of [A] is
  • 1
  • 1
  • 0
  • 2
`If (8,1),(k,4),(2,5) are collinaer, then k=
  • 1
  • 2
  • 3
  • 4
If A=[5123], the determinant of matrix A is
  • 13
  • 12
  • 17
  • 13
Find the determinant:
|121222314|
  • 2
  • 0
  • 3
  • 1
|1aa21bb21cc2|=
  • (ab)(bc)(ca)
  • (a+b)(ca)
  • (a+b+c)2
  • 2(a+b+c)2
If the points (a,1),(2,1) and (12,2) are collinear, then a is equal to:
  • 1
  • 0
  • 2
  • 14
If A=|12(eα+eα)12(eαeα)12(eαeα)12(eα+eα)|  then A1 exists
  • For all real α
  • For positive real α only
  • For negative real α only
  • None of these
What is the value of the determinant
|1!2!3!2!3!4!3!4!5!|?
  • 0
  • 12
  • 24
  • 36
lf A=[156804372], then the cofactor of -7=...... 

  • 44
  • 43
  • 40
  • 39
The vectorial angle of a point P on the line joining the points (r1,θ1) and (r2,θ2) is θ1+θ22 then the length of radius vector of P is
  • r1r2r1+r2cos(θ1θ22)
  • r1+r2r1r2cos(θ1θ22)
  • r1r2r1+r2cos(θ1θ22)
  • None of these
If the entries in a 3×3 determinant are either 0 or 1, then the greatest value of their determinats is:
  • 1
  • 2
  • 3
  • 9
If A+B+C=π, then |tan(A+B+C)tanBtanCtan(A+C)0tanAtan(A+B)tanA0| is equal to
  • 0
  • 1
  • tanAtanBtanC
  • 2
The value of |2+i2i1+i1i| is:
  • A complex quantity
  • real quantity
  • 0
  • cannot be determined
IfA=[1321], then the determinant A22A:
  • 5
  • 25
  • 5
  • 25
|1logbalogab1| =....
  • ab
  • ba
  • ab
  • 0
lf |a+xaxaxaxa+xaxaxaxa+x|=0 then the non-zero value of x=............ 
  • a
  • 3a
  • 2a
  • 4a
lf |12x417246| is a singular matrix, then x is equal to 
  • 0
  • 1
  • 3
  • 3
If A=[122232223242324252], then the minor of a22 is
  • 56
  • 51
  • 43
  • 41
|142012512x5x2|=0 find x
  • -1, 2
  • 0,1
  • 1, 3
  • 2, 0
If a, b, c are all positive and not all equal then the value of the determinant [abcbcacab] is 
  • 0
  • < 0
  • > 0
  • cannot be determined
|a+babaa+ccbcb+c|=
  • 4 abc
  • abc
  • 2a2b2c2
  • 4a2b2c2
Adj (Adj[2346])= 
  • [2346]
  • [6342]
  • [6342]
  • [6342]
A= [300030003] ,then Adj ( A)
  • 3A
  • 6A
  • 9AT
  • 2AT
[cosα+isinαcosβ+isinβsinβ+icosβ sinα+icosα] is
  • 2 cosα
  • 2 sinβ
  • 0
  • 1
If A is an unitary matrix then |A| is equal to:
  • 1
  • 1
  • ±1
  • 2
If A =[012123311] then Adj (A) = 
  • [1+85163121]
  • [1+11862531]
  • [111862531]
  • [185163121]
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers