MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Determinants Quiz 7 - MCQExams.com
CBSE
Class 12 Commerce Maths
Determinants
Quiz 7
If $$A = \begin{vmatrix} a_{1} & b_{1} & c_{1}\\ a_{2} & b_{2} & c_{2}\\ a_{3} & b_{3} & c_{3}\end{vmatrix}$$ and $$B = \begin{vmatrix} c_{1}& c_{2} & c_{3}\\ a_{1} & a_{2} & a_{3}\\ b_{1} & b_{2} & b_{3}\end{vmatrix}$$ then.
Report Question
0%
$$A = -B$$
0%
$$A = B$$
0%
$$B = 0$$
0%
$$B = A^{2}$$
Explanation
Let determinant of matrix, $$\begin{vmatrix} c_{ 1 } & c_{ 2 } & c_{ 3 } \\ { a }_{ 1 } & { a }_{ 2 } & { a }_{ 3 } \\ { b }_{ 1 } & { b }_{ 2 } & { b }_{ 3 } \end{vmatrix}$$ be $$y$$
$$\begin{vmatrix} c_{ 1 } & c_{ 2 } & c_{ 3 } \\ { a }_{ 1 } & { a }_{ 2 } & { a }_{ 3 } \\ { b }_{ 1 } & { b }_{ 2 } & { b }_{ 3 } \end{vmatrix}$$
exchanging row $$1$$ and row $$2$$, the determinant becomes $$-y$$
$$ \begin{vmatrix} { a }_{ 1 } & { a }_{ 2 } & { a }_{ 3 } \\ c_{ 1 } & c_{ 2 } & c_{ 3 } \\ { b }_{ 1 } & { b }_{ 2 } & { b }_{ 3 } \end{vmatrix}$$
exchanging row $$2$$ and row $$3$$ the determinant becomes $$y$$
$$ \begin{vmatrix} { a }_{ 1 } & { a }_{ 2 } & { a }_{ 3 } \\ { b }_{ 1 } & { b }_{ 2 } & { b }_{ 3 } \\ c_{ 1 } & c_{ 2 } & c_{ 3 } \end{vmatrix}$$
Now taking transpose the determinant will remain $$y$$
$$ \begin{vmatrix} { a }_{ 1 } & b_{ 1 } & { c }_{ 1 } \\ { a }_{ 2 } & { b }_{ 2 } & { c }_{ 2 } \\ { a }_{ 3 } & b_{ 3 } & c_{ 3 } \end{vmatrix}\\ \\ $$
So, $$A=B$$
(b)
If $$\begin{vmatrix}1 & sin \theta &1 \\ -sin \theta & 1 & sin \theta\\ -1 & -sin \theta & 1\end{vmatrix}$$ then,
Report Question
0%
$$\Delta =0$$
0%
$$\Delta \in (0, \infty )$$
0%
$$\Delta \in [-1, 2]$$
0%
$$\Delta \in [2, 4]$$
Explanation
Let $$\Delta = \begin{vmatrix}1 & sin \theta &1 \\ -sin \theta & 1 & sin \theta\\ -1 & -sin \theta & 1\end{vmatrix}$$
$$=1(1+sin^2 \theta)-sin \theta (0)+1(sin^2 \theta +1)$$
$$= 2 (1+sin^2 \theta)$$
$$\because 0 \leq sin^2 \theta \leq 1$$
$$\Rightarrow 1\leq 1+sin^2 \theta\leq 2$$
$$\Rightarrow 2 \leq 2 (1+sin^2 \theta)\leq 4$$
$$\Rightarrow 2 \leq \Delta \leq 4$$
$$\Rightarrow \Delta \in [2,4]$$
If $$A=\begin{bmatrix} x & 1 & -x \\ 0 & 1 & -1 \\ x & 0 & 7 \end{bmatrix}$$ and $$det(A)=\begin{vmatrix} 3 & 0 & 1 \\ 2 & -1 & 0 \\ 0 & 6 & 7 \end{vmatrix}$$ then the value of $$x$$ is
Report Question
0%
$$-3$$
0%
$$3$$
0%
$$2$$
0%
$$-8$$
0%
$$-2$$
Explanation
Given, $$A=\begin{bmatrix} x & 1 & -x \\ 0 & 1 & -1 \\ x & 0 & 7 \end{bmatrix}$$. Then
det $$(A) = x7-1(0+x)-x(0-x)$$
$$=7x-x+x^2=x^2+6x$$ $$...(i)$$
Also $$det(A)=\begin{vmatrix} 3 & 0 & 1 \\ 2 & -1 & 0 \\ 0 & 6 & 7 \end{vmatrix}$$
$$=3(-7-0)-0+1(12)=-9$$ $$...(ii)$$
From Eqs(i) and (ii), we get
$$\quad { x }^{ 2 }+6x=-9$$
$$\Rightarrow { x }^{ 2 }+6x+9=0\Rightarrow { (x+3) }^{ 2 }=0$$
$$x+3=0$$
$$x=-3$$
If $$A=\begin{vmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{vmatrix}$$, then the value of $$\left| A \right| \left| adj\left( A \right) \right| $$ is
Report Question
0%
$${ a }^{ 3 }$$
0%
$${ a }^{ 6 }$$
0%
$${ a }^{ 9 }$$
0%
$${ a }^{ 27 }$$
Explanation
$$A=\left| \begin{matrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{matrix} \right| =\\ \Rightarrow |A|={ a }^{ 3 }\left| \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right| ={ a }^{ 3 }\\ \left| adj(A) \right| ={ \left| A \right| }^{ n-1 }$$
Here $$n=3$$
$$\Rightarrow \left| adj(A) \right| ={ \left| A \right| }^{ 3-1 }={ \left| A \right| }^{ 2 }={ a }^{ 6 }\\ \Rightarrow |A|.\left| adj(A) \right| ={ a }^{ 3 }.{ a }^{ 6 }={ a }^{ 9 }$$
So option $$C$$ is correct
If $$A=\begin{bmatrix} 1 & 2 & -1 \\ -1& 1 & 2 \\ 2 & -1 & 1\end{bmatrix}$$, then $$\text{det} (\text{adj}(\text{adj} A))$$ is equal to.
Report Question
0%
$$14^4$$
0%
$$14^3$$
0%
$$14^2$$
0%
$$14$$
Explanation
We have, $$A=\begin{bmatrix} 1 & 2 & -1\\ -1 & 1 & 2 \\ 2 & -1 & 1\end{bmatrix}$$
$$\Rightarrow |A|=1(1+2)-2(-1-4)-1(1-2)$$
$$=3+10+1=14$$
We know that, for a square matrix of order $$n$$,
$$\text{adj}(\text{adj} A)=|A|^{n-2}A,$$ if $$|A|\neq 0$$
$$\Rightarrow \text{det}(\text{adj} (\text{adj} A))=||A|^{n-2}A|$$
$$\Rightarrow \text{det}(\text{adj} (\text{adj} A))=(|A|^{n-2})^n|A|$$
$$\Rightarrow \text{det}(\text{adj} (\text{adj} A))=|A|^{n^2-2n+1}$$
Here, $$n=3$$ and $$|A|=14$$
Therefore, $$ \text{det}(\text{adj}(\text{adj} A))=(14)^{3^2-2\times 3+1}=14^4$$.
If $$\begin{vmatrix} x & 2 & 8 \\ 2 & 8 & x \\ 8 & x & 2 \end{vmatrix}=\begin{vmatrix} 3 & x & 7 \\ x & 7 & 3 \\ 7 & 3 & x \end{vmatrix}=\begin{vmatrix} 5 & 5 & x \\ 5 & x & 5 \\ x & 5 & 5 \end{vmatrix}=0$$ then $$x$$ is equal to
Report Question
0%
$$0$$
0%
$$-10$$
0%
$$3$$
0%
None of these
Explanation
On applying $${ R }_{ 1 }\rightarrow { R }_{ 1 }+{ R }_{ 2 }+{ R }_{ 3 }$$ in each determinant, we can take out $$\left( x+10 \right) $$ common.
Then, we get $$x+10=0$$
$$\Rightarrow x=-10$$
If $$A = \begin{bmatrix} \dfrac {-1 + i\sqrt {3}}{2i}& \dfrac {-1 - i\sqrt {3}}{2i}\\ \dfrac {1 + i\sqrt {3}}{2i} & \dfrac {1 - i\sqrt {3}}{2i}\end{bmatrix}, i = \sqrt {-i}$$ and $$f(x) = x^{2} + 2$$, then $$f(A)$$ is equal to
Report Question
0%
$$\left (\dfrac {5 - i\sqrt {3}}{2}\right ) \begin{bmatrix}
1 & 0\\
0 & 1
\end{bmatrix}$$
0%
$$\left (\dfrac {3 - i\sqrt {3}}{2}\right ) \begin{bmatrix}
1 & 0\\
0 & 1
\end{bmatrix}$$
0%
$$\begin{bmatrix}
1 & 0\\
0 & 1
\end{bmatrix}$$
0%
$$(2 + i\sqrt {3})\begin{bmatrix}
1 & 0\\
0 & 1
\end{bmatrix}$$
Explanation
From the given matrix, we have
$$A = \begin{bmatrix}\dfrac {\omega}{i} & \dfrac {\omega^{2}}{i}\\ -\dfrac {\omega^{2}}{i} & -\dfrac {\omega}{i}\end{bmatrix} = \dfrac {\omega}{i} \begin{bmatrix}1 & \omega\\ -\omega & -1\end{bmatrix}$$
Thus $$ A^{2} = \omega^{2} \begin{bmatrix}1 - \omega^{2} & 0\\ 0 & 1 - \omega^{2}\end{bmatrix}$$
$$= -\begin{bmatrix}-\omega^{2} + \omega^{4}& 0\\ 0 & -\omega^{2} + \omega\end{bmatrix}$$
$$= \begin{bmatrix}-\omega^{2} + \omega & 0\\ 0 & -\omega^{2} + \omega\end{bmatrix} $$ ....$$\text{Since} \ f(x) = x^{2} + 2$$
Therefore, $$ f(A) = A^{2} + 2 = \begin{bmatrix}-\omega^{2} + \omega & 0\\ 0 & -\omega^{2} + \omega\end{bmatrix} + \begin{bmatrix}2 & 0\\ 0 & 2\end{bmatrix}$$
$$- [\omega^{2} + \omega + 2] \begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}$$
$$= (3 + 2\omega) \begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}$$
$$ = (2 + i\sqrt {3})\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}$$
If $$3x+2y=I$$ and $$2x-y=O$$, where $$I$$ and $$O$$ are unit and null matrices of order $$3$$ respectively, then
Report Question
0%
$$x=\dfrac { 1 }{ 7 } , y=\dfrac { 2 }{ 7 } $$
0%
$$x=\dfrac { 2 }{ 7 } , y=\dfrac { 1 }{ 7 } $$
0%
$$x=\left( \dfrac { 1 }{ 7 } \right) I, y=\left( \dfrac { 2 }{ 7 } \right) I$$
0%
$$x=\left( \dfrac { 2 }{ 7 } \right) I, y=\left( \dfrac { 1 }{ 7 } \right) I$$
Explanation
We have,
$$3x+2y=I$$ ...(i)
$$2x-y=O$$ ....(ii)
On multiplying equation (ii) by $$2$$, we get
$$4x-2y=2\cdot O=O$$ ...(iii)
On adding equations (i) and (iii), we get
$$3x+2y=I$$
$$4x-2y=O$$
____________
$$7x=I$$
$$\Rightarrow x=\dfrac { I }{ 7 } $$ or $$\dfrac { 1 }{ 7 } I$$
From equation (i), we get
$$2y=I-\dfrac { 3 }{ 7 } I=\dfrac { 4 }{ 7 } I$$
$$\Rightarrow y=\dfrac { 2 }{ 7 } I$$
$$\begin{vmatrix} { \left( { a }^{ x }+{ a }^{ -x } \right) }^{ 2 } & { \left( { a }^{ x }-{ a }^{ -x } \right) }^{ 2 } & 1 \\ { \left( b^{ x }+{ b }^{ -x } \right) }^{ 2 } & { \left( { b }^{ x }-{ b }^{ -x } \right) }^{ 2 } & 1 \\ { \left( { c }^{ x }+{ c }^{ -x } \right) }^{ 2 } & { \left( { c }^{ x }-{ c }^{ -x } \right) }^{ 2 } & 1 \end{vmatrix}$$ is equal to
Report Question
0%
$$0$$
0%
$$2abc$$
0%
$${ a }^{ 2 }{ b }^{ 2 }{ c }^{ 2 }$$
0%
None of these
Explanation
Let $$ \Delta=\begin{vmatrix} { \left( { a }^{ x }+{ a }^{ -x } \right) }^{ 2 } & { \left( { a }^{ x }-{ a }^{ -x } \right) }^{ 2 } & 1 \\ { \left( b^{ x }+{ b }^{ -x } \right) }^{ 2 } & { \left( { b }^{ x }-{ b }^{ -x } \right) }^{ 2 } & 1 \\ { \left( { c }^{ x }+{ c }^{ -x } \right) }^{ 2 } & { \left( { c }^{ x }-{ c }^{ -x } \right) }^{ 2 } & 1 \end{vmatrix}$$
Put $$x=0$$ in the given determinant, we get
$$\Delta =\begin{vmatrix} { \left( 1+1 \right) }^{ 2 } & { \left( 1-1 \right) }^{ 2 } & 1 \\ { \left( 1+1 \right) }^{ 2 } & { \left( 1-1 \right) }^{ 2 } & 1 \\ { \left( 1+1 \right) }^{ 2 } & { \left( 1-1 \right) }^{ 2 } & 1 \end{vmatrix}$$
$$=\begin{vmatrix} 4 & 0 & 1 \\ 4 & 0 & 1 \\ 4 & 0 & 1 \end{vmatrix}$$
$$=0$$
If the determinant $$\Delta =\begin{vmatrix} 3 & -2 & \sin { 3\theta } \\ -7 & 8 & \cos { 2\theta } \\ -11 & 14 & 2 \end{vmatrix}=0$$, then the value of $$\sin { \theta } $$ is
Report Question
0%
$$\dfrac { 1 }{ 3 }$$ or $$ 1$$
0%
$$\dfrac { 1 }{ \sqrt { 2 } } $$ or $$\dfrac { \sqrt { 3 } }{ 2 } $$
0%
$$0$$ or $$\dfrac { 1 }{ 2 } $$
0%
None of these
Explanation
Applying $${ R }_{ 2 }\rightarrow { R }_{ 2 }+4{ R }_{ 1 }$$ and $${ R }_{ 3 }\rightarrow { R }_{ 3 }+7{ R }_{ 1 }$$ we get
$$\begin{vmatrix} 3 & -2 & \sin { 3\theta } \\ 5 & 0 & \cos { 2\theta } +4\sin { 3\theta } \\ 10 & 0 & 2+7\sin { 3\theta } \end{vmatrix}=0$$
$$\Rightarrow 2\left[ 5\left( 2+7\sin { 3\theta } \right) -10\left( \cos { 2\theta } +4\sin { 3\theta } \right) \right] =0$$
$$\Rightarrow 2+7\sin { 3\theta } -2\cos { 2\theta } -8\sin { 3\theta } =0$$
$$\Rightarrow 2-2\cos { 2\theta } -\sin { 3\theta } =0$$
$$\Rightarrow \sin { \theta } \left( 4\sin ^{ 2 }{ \theta } +4\sin { \theta } -3 \right) =0$$
$$\Rightarrow \sin { \theta } =0$$ or $$\left( 2\sin { \theta } -1 \right) =0$$ or $$\left( 2\sin { \theta } +3 \right) =0$$
$$\Rightarrow \sin { \theta } =0$$ or $$\sin { \theta } =\dfrac { 1 }{ 2 } $$
If $$A, B, C$$ are collinear points such that $$A(3, 4), C(11, 10)$$ and $$AB = 2.5$$ then point $$B$$ is
Report Question
0%
$$\left(5,\dfrac{11}{2}\right)$$
0%
$$\left(\dfrac{5}{2},11\right)$$
0%
$$(5, 5)$$
0%
$$(5, 6)$$
Explanation
Given that the points $$A,B,C$$ are collinear such that $$A(3,4),C(11,10)$$ and $$AB=2.5$$,
Consider the line joining $$A$$ and $$C$$,
Slope of that line is $$\tan { \alpha } =\dfrac { 10-4 }{ 11-3 } =\dfrac { 3 }{ 4 } $$,
$$\Longrightarrow \cos { \alpha } =\dfrac { 4 }{ 5 } $$ and $$\sin { \alpha } =\dfrac { 3 }{ 5 } $$,
We know that a point in a line at a distance $$r$$ from that point is $$y={ y }_{ 1 }+r\sin { \alpha } $$ and $$x={ x }_{ 1 }+r\cos { \alpha } $$,
Where $$\tan{\alpha}$$ is the slope of that line
Let the coordinates of the point $$B$$ be $$(x,y)$$,
$$\Longrightarrow x=3+2.5(0.2)=5$$ and $$y=3+2.5(0.6)=\dfrac { 11 }{ 2 } $$,
$$\therefore$$ The coordinates of $$B$$ are $$\left(5,\dfrac{11}{2}\right)$$
If $$A = \begin{bmatrix} 2& -3\\ 4 & 1\end{bmatrix}$$, then adjoint of matrix $$A$$ is _______.
Report Question
0%
$$ \begin{bmatrix} 1& 3\\ -4 & 2\end{bmatrix}$$
0%
$$ \begin{bmatrix} 1& -3\\ -4 & 2\end{bmatrix}$$
0%
$$ \begin{bmatrix} 1& 3\\ 4 & -2\end{bmatrix}$$
0%
$$ \begin{bmatrix} -1& -3\\ -4 & 2\end{bmatrix}$$
Explanation
Let
$$A=\begin{bmatrix} 2&-3 \\4&1\end{bmatrix}$$
Let $$C$$ be the cofactor matrix of matrix $$A$$.
$${C}_{11}={\left(-1\right)}^{1+1}{M}_{11}=1$$
$${C}_{12}={\left(-1\right)}^{1+2}{M}_{12}=-4$$
$${C}_{21}={\left(-1\right)}^{2+1}{M}_{21}=3$$
$${C}_{22}={\left(-1\right)}^{2+2}{M}_{22}=2$$
$$\therefore {C}_{ij}=\begin{bmatrix} {C}_{11} & {C}_{12} \\ {C}_{21} & {C}_{22}\end{bmatrix}$$
$$=\begin{bmatrix} 1 & -4 \\ 3 & 2\end{bmatrix}$$
Adj$$\left({C}_{ij}\right)={\begin{bmatrix} 1 & -4 \\ 3 & 2\end{bmatrix}}^{T}$$
$$=\begin{bmatrix} 1 & 3 \\ -4 & 2\end{bmatrix}$$
If maximum and minimum values of $$D = \begin{vmatrix}1 & -\cos \theta & 1\\ \cos \theta & 1 & -\cos \theta\\ 1 & \cos \theta & 1\end{vmatrix}$$ are $$p$$ and $$q$$ respectively, then the value of $$2p + 3q$$ is _________.
Report Question
0%
$$16$$
0%
$$6$$
0%
$$14$$
0%
$$8$$
Explanation
$$D = \begin{vmatrix}1 & -\cos \theta & 1\\ \cos \theta & 1 & -\cos \theta\\ 1 & \cos \theta & 1\end{vmatrix}$$
$$\Rightarrow D = 1(1 + \cos^{2}\theta) + \cos \theta (\cos \theta + \cos \theta) - 1 (\cos^{2}\theta - 1)$$
$$= 1 + \cos^{2}\theta + 2\cos^{2}\theta -\cos^{2} \theta + 1$$
$$= 2 (1 + \cos^{2} \theta)$$
Now, $$-1\le \cos \theta\le 1\Rightarrow 0\le \cos^{2}\theta\le 1$$
$$\therefore p = 4, q = 2$$
$$\therefore 2p + 3q = 14$$.
The value of the determinant $$\begin{vmatrix}b^2-ab & b-c & bc-ac\\ ab-a^2 & a-b & b^2-ab\\ bc-ac & c-a & ab-a^2\end{vmatrix}$$$$=$$ ____________.
Report Question
0%
$$abc$$
0%
$$a+b+c$$
0%
$$0$$
0%
$$ab+bc+ca$$
If the vectors $$\vec {a}, \vec {b}, \vec {c}$$ are coplanar, then the value of $$\begin{vmatrix}\vec {a}& \vec {b} & \vec {c}\\ \vec {a}.\vec {a} & \vec {a}.\vec {b} & \vec {a}.\vec {c}\\ \vec {b}.\vec {a} & \vec {b}.\vec {b} & \vec {b} . \vec {c}\end{vmatrix} =$$
Report Question
0%
$$1$$
0%
$$0$$
0%
$$-1$$
0%
$$\vec {a} + \vec {b} + \vec {c}$$
Explanation
$$\bar { a } \cdot \bar { b } =\bar { a } \bar { b } \cos { \theta } $$
Co planar
$$\Rightarrow \theta =0$$
$$\Rightarrow \bar { a } \cdot \bar { b } =0$$
Parallelly $$\bar { a } \cdot \bar { c } =\bar { a } \cdot \bar { c } =0$$
$$\begin{vmatrix} \bar { a } & \bar { b } & \bar { c } \\ \bar { a } \cdot \bar { a } & \bar { a } \cdot \bar { b } & \bar { a } \cdot \bar { c } \\ \bar { b } \cdot \bar { a } & \bar { b } \cdot \bar { b } & \bar { b } \cdot \bar { c } \end{vmatrix}$$
$$=\begin{vmatrix} \bar { a } & \bar { b } & \bar { c } \\ \bar { a } \cdot \bar { a } & 0 & 0 \\ 0 & \bar { b } \cdot \bar { b } & 0 \end{vmatrix}$$
$$=\bar { a } \left( 0 \right) -\bar { b } \left( 0 \right) +\bar { c } \left( \bar { a } \cdot \bar { a } -\bar { b } \cdot \bar { b } \right) $$
$$=0$$
Let $$A^{-1}\begin{bmatrix} 1 & 2017 & 2\\ 1 & 2017 & 4 \\ 1 & 2018 & 8\end {bmatrix}$$. Then $$|2A|-|2A^{-1}|$$ is equal to.
Report Question
0%
$$3$$
0%
$$-3$$
0%
$$12$$
0%
$$-12$$
Explanation
$$\left | A^{-1} \right | = \dfrac{1}{\left | A \right |}$$
given matrix
$$A^{-1} =$$
\begin{bmatrix}
1&2017 &2 \\
1& 2017 &4 \\
1&2018 &8
\end{bmatrix}
solving the determinant
$$\left | A^{-1} \right | = \dfrac{1}{\left | A \right |} = -2$$
$$\left | kA \right | = k^{n}\left | A \right |$$
where n is the order of the matrix
$$-\left | 2A^{-1} \right | + \left | 2A \right |$$
$$=-(-2)\times 2^{3}+\dfrac{-1}{2}\times 2^{3} =12 $$
The value of the determinant
$$\begin{vmatrix} \cos^2 \dfrac{\theta}{2}&\sin^2\dfrac{\theta}{2}\\ \sin^2\dfrac{\theta}{2} &\cos^2\dfrac{\theta}{2} \end{vmatrix}$$
for all values of $$\theta $$, is
Report Question
0%
$$1$$
0%
$$\cos\theta $$
0%
$$\sin\theta $$
0%
$$\cos2\theta $$
Explanation
$$\begin{vmatrix}\cos ^2\dfrac{\theta}{2}&\sin ^2\dfrac{\theta}{2}\\ \sin ^2\dfrac{\theta}{2} & {\cos }^2 \dfrac{\theta}{2}\end{vmatrix}=\cos ^4\dfrac{\theta}{2}-\sin ^4\dfrac{\theta}{2}$$
$$=\left({\cos }^2 \dfrac{\theta}2+{\sin }^2 \dfrac{\theta}2\right)\left({\cos }^2 \dfrac{\theta}2-{\sin }^2 \dfrac{\theta}2\right)$$
$$=1\times \cos \theta=\cos \theta$$
Hence, the answer is $$\cos \theta$$.
Let $$z = \begin{vmatrix} 1& 1 + 2i & -5i\\ 1 - 2i & -3 & 5 + 3i\\ 5i & 5 - 3i & 7\end{vmatrix}$$, then
Report Question
0%
$$z$$ is purely real
0%
$$z$$ is purely imaginary
0%
$$(z - \overline {z})i = 0$$
0%
$$(z + \overline {z})i = 0$$
Explanation
$$z=\left| \begin{matrix} 1 & 1+2i & -5i \\ 1-2i & -3 & 5+3i \\ 5i & 5-3i & 7 \end{matrix} \right| \\ \quad =1(-21-36)\quad -(1+2i)(7-14i-25i+15)\quad -5i(-13i-1)\\ \quad =-57-(1+2i)(22-39i)-65+5i\\ \quad =-57-(22-39i+44i+78)-65+5i\\ \quad =-57-100-5i-65+5i\\ \quad =-222$$
$$ \therefore z$$ is purely real.
The adjoint of the matric $$A = \begin{bmatrix}1 & 0 & 2\\ 2 & 1 & 0\\ 0 & 3 & 1\end{bmatrix}$$ is
Report Question
0%
$$\begin{bmatrix}-1 & 6 & 2\\ -2 & 1 & -4\\ 6 & 3 & 1\end{bmatrix}$$
0%
$$\begin{bmatrix}1 & 6 & -2\\ -2 & 1 & 4\\ 6 & -3 & 1\end{bmatrix}$$
0%
$$\begin{bmatrix}6 & 1 & 2\\ 4 & -1 & 2\\ 6 & 3 & -1\end{bmatrix}$$
0%
$$\begin{bmatrix}-6 & 2 & 1\\ 4 & -2 & 1\\ 3 & 1 & -6\end{bmatrix}$$
Explanation
$$adj(A)=cofactor(A)^T=\begin{bmatrix} A_{11} &A_{21}&A_{31}\\A_{12} &A_{22} &A_{32}\\A_{13} &A_{23} &A_{33}\end{bmatrix}=\begin{bmatrix} 1 &6&-2\\-2 &1 &4\\6 &-3 &1\end{bmatrix}$$
Three distinct points A, B and C are given in the 2-dimensional coordinate plane such that the ratio of the distance of any one of them from the point $$(1, 0)$$ to the distance from the point $$(-1, 0)$$ is equal to $$\displaystyle \frac{1}{3}$$. Then the circumcentre of the triangle ABC is at the point:
Report Question
0%
$$\displaystyle \left( \frac{5}{2}, 0 \right)$$
0%
$$\displaystyle \left( \frac{5}{3}, 0 \right)$$
0%
$$\displaystyle \left( 0, 0 \right)$$
0%
$$\displaystyle \left( \frac{5}{8}, 0 \right)$$
Explanation
Let (h,k) be the locus of points A, B & C
using given condition
$$\dfrac{\sqrt{(h-1)^{2}+K^{2}}}{\sqrt{(h+1)^{2}+K^{2}}}=\dfrac{1}{3}$$
$$9(h-1)^{2}+9K^{2}=(h+1)^{2}+K^{2}$$
or,
$$8h^{2}+8K^{2}-20h+8=0$$
$$h^{2}+K^{2}-\dfrac{5h}{4}+1=0$$
this is a circle and it will be same circle which circumscribe $$\Delta ABC$$ as it contains all three pts on it.
$$\therefore $$ center of circumcircle $$\equiv \left(\dfrac{5}{8}, 0\right)$$
If $$A + B + C = \pi$$, then $$\begin{vmatrix} \sin (A + B + C)& \sin B & \cos C\\ -\sin B & 0 & \tan A\\ \cos (A + B) & -\tan A & 0\end{vmatrix}$$ is equal to
Report Question
0%
$$0$$
0%
$$2\sin B \tan A \cos C$$
0%
$$1$$
0%
None of these
Explanation
Given $$A+B+C= \pi$$
$$=\begin{vmatrix} \sin (A+B+C) & \sin B & \cos C \\ -\sin B & 0 & \tan A \\ \cos A+B & -\tan A & 0 \end{vmatrix}$$
$$=\begin{vmatrix} \sin \pi & \sin B & \cos C \\ -\sin B & 0 & \tan A \\ \cos (\pi-C) & -\tan A & 0 \end{vmatrix}$$
$$=\sin\pi [\tan^2A]-\sin B[-\tan A \cos (\pi-C)]+\cos C[\sin B\tan A]$$
$$=0+\sin B\, \tan A\, \cos(\pi-C)+\cos C \sin B \tan A$$
$$=\sin B\, \tan A[\cos\pi \cos C+ \sin\pi \sin C]+\cos C\sin B\tan A$$
$$=-\sin B \tan A\cos C +\cos C \sin B \tan A$$
$$=0$$
$$\left[\therefore \sin \pi=0 ,\cos \pi =-1\right]$$
If $$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$ satisfies the equation $$x^2 - (a + d) x + k = 0$$, then ?
Report Question
0%
$$k = bc$$
0%
$$k = ad$$
0%
$$k = a^2 + b^2 + c^2 + d^2$$
0%
$$ad - bc$$
Explanation
If a matrix $$A$$ satisfies a polynomial equation, then the product of the roots of that equation is the determinant of $$A$$.
Here, product of roots of the equation = $$k$$, also $$det(A)=ad-bc$$.
Therefore, $$k=ad-bc$$
For a positive numbers $$x, y$$ and $$z$$ the numerical value of the determinant $$\begin{bmatrix}1 & \log_{x} y & \log_{x} z \\ \log_{y} x & 1 & \log_{y} z\\ \log_{z} x & \log_{z} y & 1\end{bmatrix}$$ is:
Report Question
0%
$$0$$
0%
$$1$$
0%
$$\log_{e} xyz$$
0%
$$-\log_{e} xyz$$
Explanation
$$D=\left| \begin{matrix} 1 & \log _{ x }{ y } & \log _{ x }{ z } \\ \log _{ y }{ x } & 1 & \log _{ y }{ z } \\ \log _{ z }{ x } & \log _{ z }{ y } & 1 \end{matrix} \right| =(1-\log _{ z }{ y } .\log _{ y }{ z } )-\log _{ x }{ y } \left( \log _{ y }{ x } -\log _{ z }{ x } .\log _{ y }{ z } \right) +\log _{ x }{ z } \left( \log _{ y }{ x } .\log _{ z }{ y } -\log _{ z }{ x } \right) \\ =\left( 1-1 \right) -\log _{ x }{ y } \left( \log _{ y }{ x } -\log _{ y }{ x } \right) +\log _{ x }{ z } \left( \log _{ z }{ x } -\log _{ z }{ x } \right) =0-0+0=0$$
The value of the determinant $$\begin{vmatrix}b^{2}-ab\,\, b-c\,\, bc-ac & & \\ ab-a^{2}\,\, a-b\,\, b^{2}-ab& & \\ bc-ac\,\, c-a\,\, ab-a^{2}& & \end{vmatrix}$$ =
Report Question
0%
$$abc$$
0%
$$a+b+c$$
0%
$$0$$
0%
$$ab+bc+ca$$
Explanation
$$\begin{vmatrix}b^{2}-ab\,\, b-c\,\, bc-ac & & \\ ab-a^{2}\,\, a-b\,\, b^{2}-ab& & \\ bc-ac\,\, c-a\,\, ab-a^{2}& & \end{vmatrix}=0$$
$$a=b=c=1$$
If the points $$A(-2,1),B(a,b)$$ and $$C(4,-1)$$ are collinear and $$a-b=1$$, find the values of $$a$$ and $$b$$.
Report Question
0%
$$a=1,b=5$$
0%
$$a=1,b=0$$
0%
$$a=2,b=0$$
0%
None of these
Explanation
Three points $$A(-2,1),\ B(a,b)$$ and $$C(4,-1)$$ are collinear so the area of the triangle is equal to zero
Here the equation $$(1)$$ is $$\to a-b=1$$
Here $$x_1=-2\ y_1=1$$
$$x_1 =a\ y_1=b$$
$$x_3=4\ y_3=-1$$
Area of the triangle $$\triangle ABC=\dfrac {1}{2} [x_1 (y_2 -y_3)+x_2 (y_3 -y_1)+x_3 (y_1 -y_2)]=0$$
$$\Rightarrow \ \dfrac {1}{2} [-2(b+1)+a(-1 -1)+4(1-b)]=0$$
$$\Rightarrow \ \dfrac {1}{2}[-2b-2-2b+4-4b]=0$$
$$\Rightarrow \ \dfrac {1}{2} [-6b+2-2b]=0$$
$$\Rightarrow \ -3b+1-a=0$$
$$\Rightarrow \ -a-3b=-1$$......Equation $$2$$
Equation $$(1)\times 1\longrightarrow a-b=1$$
Equation $$(2)\times 1\to \dfrac {-a-2b=-1}{-4b=0\\ \Rightarrow b=0}$$
Putting the value of $$b=0$$ in Equation $$1:-$$
$$a-b=1$$
$$\Rightarrow \ a=1$$
So the value of $$a=1, b=0$$
State true or false.
The determinants $$
\left |
\begin{array}{111}
1 & a & bc \\
1 & b & cd \\
1 & c & ab \\
\end {array}
\right |
$$ and $$
\left |
\begin{array}{111}
1 & a & a^2 \\
1 & b & b^2 \\
1 & c & c^2 \\
\end {array}
\right |
$$ are not identically equal.
Report Question
0%
True
0%
False
If $$\triangle$$ =$$
\left |
\begin{array}{111}
x_1+y_1\omega & x_1\omega^2+y_1 & x_1+y_1\omega+z_1\omega^2 \\
x_2+y_2\omega & x_2\omega^2+y_2 & x_2+y_2\omega+z_2\omega^2 \\
x_3+y_3\omega & x_3\omega^2+y_3 & x_3+y_3\omega+z_3\omega^2 \\
\end {array}
\right |
$$
where $$1,\omega,\omega^2$$ are cube roots of unity then $$\triangle$$ is equal to
Report Question
0%
$$0$$
0%
$$1$$
0%
$$-1$$
0%
None of these
$$\left| \begin{matrix} 1+a & 1 & 1 & 1 \\ 1 & 1+b & 1 & 1 \\ 1 & 1 & 1+c & 1 \\ 1 & 1 & 1 & 1+d \end{matrix} \right|$$
$$=abcd\left( 1+\dfrac { 1 }{ a } +\dfrac { 1 }{ b } +\dfrac { 1 }{ c } +\dfrac { 1 }{ d } \right)\\ =s-r$$
if $$a,b,c,d$$ are the roots of $${ x }^{ 4 }+p{ x }^{ 3 }+q{ x }^{ 2 }+rx+s=0.$$
Report Question
0%
True
0%
False
If $$\left |\begin{array}{111}6i & -3i & 1 \\4 & 3i & -1 \\20 & 3 & i \\\end {array}\right | =x+iy$$, then
Report Question
0%
$$x=3, y=1$$
0%
$$x = 1, y=3$$
0%
$$x=0, y=3$$
0%
$$x=0, y=0$$
Explanation
$$\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3 i & -1 \\ 20 & 3 & i \end{vmatrix}$$
$$\Rightarrow 6i((3i. i) - (-3)) + 3i (4 . i + 20) + 1 (12 - 60 i)$$
$$\Rightarrow 6i (-3 + 3) + 12 (-1) + 60 i + 12 - 60 i$$
$$\Rightarrow 0$$
$$[\because i^2 = -1]$$
$$x + i y = 0 + i(0)$$
$$x = 0 , y = 0$$
The value of determinant $$\begin{vmatrix} x+1 & x+2 & x+4\\ x+3 & x+5 & x+8\\ x+7 & x+10 & x+14\end{vmatrix}$$ is?
Report Question
0%
$$-2$$
0%
$$x^2+2$$
0%
$$2$$
0%
None of these
Explanation
Operating $$C_3-C_2$$ and $$C_2-C_1$$, we get $$\Delta =\begin{vmatrix} x+1 & 1 & 2\\ x+3 & 2 & 3\\ x+7 & 3 & 4\end{vmatrix}$$
Apply $$R_3-R_2, R_2-R_1$$
$$\Delta =\begin{vmatrix} x+1 & 1 & 2\\ 2 & 1 & 1\\ 4 & 1 & 1\end{vmatrix}$$ apply $$C_3-C_2$$
$$\begin{vmatrix} x+1 & 1 & 1\\ 2 & 1 & 0 \\ 4 & 1 & 0\end{vmatrix}=1.(2-4)=-2$$
If $$\Delta_1=\begin{vmatrix} x & b & b\\ a & x & b\\ a & a & x\end{vmatrix}$$ and $$\Delta_2=\begin{vmatrix} x & b\\ a & x\end{vmatrix}$$ are the given determinants, then.
Report Question
0%
$$\Delta_1=3(\Delta_2)^2$$
0%
$$(d/dx)\Delta_1=3\Delta_2$$
0%
$$(d/dx)\Delta_1=3(\Delta_2)^2$$
0%
$$\Delta_1=3\Delta_2^{3/2}$$
If A = $$\begin{bmatrix}
a & 0 & 0 \\[0.3em]
0 & a & 0 \\[0.3em]
0 & 0 & a
\end{bmatrix}$$, then the value of |A| |Adj. A|
Report Question
0%
$$a^3$$
0%
$$a^6$$
0%
$$a^9$$
0%
$$a^{27}$$
Explanation
As$$|A|=(a)^3$$
$$|A|(Adj. A) = |A|$$ $$\begin{bmatrix}
a & 0 & 0 \\[0.3em]
0 & a & 0 \\[0.3em]
0 & 0 & a
\end{bmatrix}$$
=$$\begin{bmatrix}
|A| & 0 & 0 \\[0.3em]
0 & |A| & 0 \\[0.3em]
0 & 0 & |A|
\end{bmatrix}$$ where $$|A|$$ = $$a^3$$
Take determinant of both sides
|A|. |Adj. A| =$$\begin{vmatrix}
|A| & 0 & 0 \\[0.3em]
0 & |A| & 0 \\[0.3em]
0 & 0 & |A|
\end{vmatrix} |A|^3 = (a^3)^3 = a^9$$
If $$f(x) =$$ $$
\left |
\begin{array}{111}
1 & x & x+1 \\
2x & x(x-1) & (x+1)x \\
3x(x-1) & x(x-1)(x-2) & (x+1)x(x-1) \\
\end {array}
\right |
$$
then f(100) is equal to
Report Question
0%
0
0%
1
0%
100
0%
-100
Explanation
$$f(x) = \begin{vmatrix} 1 & x & x + 1 \\ 2x & x(x - 1) & (x + 1)x \\ 3x(x -1) & x(x - 1) (x - 2) & (x + 1) x(x - 1) \end{vmatrix}$$
$$x \times x \times (x - 1) \, \begin{vmatrix} 1 & x & x + 1 \\ 2 & x - 1 & x + 1 \\ 3 & x - 2 & x + 1 \end{vmatrix}$$
$$x^2 (x - 1)(x + 1) \, \begin{vmatrix} 1 & x & 1 \\ 2 & x - 1 & 1 \\ 3 & x - 2 & 1 \end{vmatrix}$$
operating : $$R_1 \rightarrow R_2 - R_1$$ & $$R_2 \rightarrow R_3 - R_2$$
$$x^2 (x^2 - 1) \, \begin{vmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ 3 & x - 2 & 1 \end{vmatrix}$$
As two rows of the determinant is zero
$$\therefore$$ Determinant $$= 0$$
Hence, $$\boxed {f(x) = 0}$$
$$\therefore$$ for any value of $$x ;\ f(x) = 0$$
Hence, $$\boxed {f(100) = 0}$$
If A = $$ \begin{bmatrix} \alpha & 2 \\ 2 & \alpha\end{bmatrix}$$ and | A$$^3$$ | = 125 then $$\alpha$$ is
Report Question
0%
$$\pm1$$
0%
=2
0%
$$\pm3$$
0%
$$\pm5$$
Explanation
$$A = \begin{bmatrix} \alpha & 2 \\ 2 & \alpha \end{bmatrix}$$. $$|A^3| = 125$$
$$|A| = \alpha^2 - 4$$
we know by properties of determinants that
$$|A^3| = |A|^3$$
$$\Rightarrow \ (\alpha^2 - 4)^3 = 125$$
$$\Rightarrow \ \alpha^2 - 4 = 5$$
$$\Rightarrow \ a^2 = 9$$
$$\Rightarrow \ \boxed {\alpha = \pm 3}$$
Hence, option $$(C)$$ is correct
If a, b, c are three non-zero distinct numbers in A.P., then
$$\triangle = $$ $$
\left |
\begin{array}{111}
(b-c)(c-a) & (a-b)(c-a) & (a-b)(b-c) \\
(c-a)(a-b) & (b-c)(a-b) & (b-c)(c-a) \\
(a-b)(b-c) & (c-a)(b-c) & (c-a)(a-b) \\
\end {array}
\right |
$$ is always +ve.
Report Question
0%
True
0%
False
If the points $$(-2, -5), (2, -2), (8, a)$$ are collinear, then the value of $$a$$ is ________.
Report Question
0%
$$\dfrac 52$$
0%
$$\dfrac 32$$
0%
$$\dfrac 72$$
0%
None of these
Explanation
If three points are collinear, then the slope of the line joining the first two points is equal to that of the last two.
Apply the slope formula $$\dfrac{(y2-y1)}{(x2-x1).}$$
If collinear then
$$\dfrac { -2+5 }{ 2+2 } =\dfrac { a+2 }{ 6 } \\ \dfrac { 9 }{ 2 } =a+2\\ a=\dfrac { 5 }{ 2 } $$
State true or false
Following points are collinear.
$$(-2, 1) , (0, 5) , (-1, 2)$$.
Report Question
0%
True
0%
False
The points $$(-a, -b), (0, 0), (a, b)$$ $$(a^2,ab)$$ are
Report Question
0%
collinear
0%
vertices of rectangle
0%
vertices of parallelgram
0%
none of these
$$2x - 3y + z = 0$$
$$x + 2y - 3z =0$$
$$4x - y - 2z = 0$$
The system of equations have a non trivial solution
Report Question
0%
True
0%
False
If the lines $$p_{ 1 }x+q_{ 1 }y=1, p_{ 2 }x+q_{ 2 }y=1$$ and $$p_{3}x+q_{3}y=1$$ be concurrent, show that the points $$(p_{1},q_{1}), (p_{2}, q_{2})$$ and $$ (p_{3}, q_{3})$$ are collinear.
Report Question
0%
vertices of right angle triangle
0%
vertices of an equilateral triangle
0%
vertices of an isosceles triangle
0%
Collinear
Explanation
Given:
$$p_{ 1 }x+q_{ 1 }y=1, p_{ 2 }x+q_{ 2 }y=1$$ and $$p_{3}x+q_{3}y=1$$
The lines will be concurrent if
$$\begin{vmatrix} { p }_{ 1 } & { q }_{ 1 } & -1 \\ { p }_{ 2 } & { q }_{ 2 } & -1 \\ { p }_{ 3 } & { q }_{ 3 } & -1 \end{vmatrix}=0$$
Or
$$\dfrac { 1 }{ 2 } \begin{vmatrix} { p }_{ 1 } & { q }_{ 1 } & 1 \\ { p }_{ 2 } & { q }_{ 2 } & 1 \\ { p }_{ 3 } & { q }_{ 3 } & 1 \end{vmatrix}=0$$
Or
$$\triangle=0$$
i.e., area of a triangle formed by the points $$({p}_{1}, {q}_{1})$$, $$({p}_{2}, {q}_{2})$$, and $$({p}_{3}, {q}_{3})$$ is zero and as such the points are collinear.
If A = $$\begin{bmatrix}
a & 0 & 0 \\[0.3em]
0 & a & 0 \\[0.3em]
0 & 0 & a
\end{bmatrix}$$, then the value of |Adj. A| is equal to
Report Question
0%
$$a^3$$
0%
$$a^6$$
0%
$$a^9$$
0%
$$a^{27}$$
Explanation
A(Adj. A) = |A| $$I_3$$ = |A| $$\begin{bmatrix}
1 & 0 & 0 \\[0.3em]
0 & 1 & 0 \\[0.3em]
0 & 0 & 1
\end{bmatrix}$$
=$$\begin{bmatrix}
|A| & 0 & 0 \\[0.3em]
0 & |A| & 0 \\[0.3em]
0 & 0 & |A|
\end{bmatrix}$$ where |A| = $$a^3$$
Take determinant of both sides
|A|. |Adj. A| =$$\begin{vmatrix}
|A| & 0 & 0 \\[0.3em]
0 & |A| & 0 \\[0.3em]
0 & 0 & |A|
\end{vmatrix} |A|^3 =|Adj. A| = |A|^{n-1} = |A|^2 = a^6$$
If $$ \begin{vmatrix}a & a & x \\ m & m & m \\b & x & b\end{vmatrix}=0$$ then $$x$$ is:
Report Question
0%
$$a$$
0%
$$b$$
0%
$$a$$ or $$b$$
0%
$$0$$
Explanation
Given $$\begin{vmatrix} a & a & x \\ m & m & m \\ b & x & b \end{vmatrix}=0$$
Expanding the determinant we get
$$a(mb-mx)-a(mb-mb)+x(mx-mb)=0\\ \Rightarrow a(mb-mx)-x(mb-mx)=0\\ \Rightarrow (a-x)(mb-mx)=0\\ \Rightarrow (a-x)(b-x)=0$$
The solution for this quadratic equation is either $$x=a$$ or $$x=b$$
$$\begin{vmatrix} 2^{ 3 } & 3^{ 3 } & 3.2^{ 2 }+3.2+1 \\ 3^{ 3 } & 4^{ 3 } & 3.3^{ 2 }+3.3+1 \\ 4^{ 3 } & 5^{ 3 } & 3.4^{ 2 }+3.4+1 \end{vmatrix}$$ is equal to
Report Question
0%
$$0$$
0%
$$1$$
0%
$$2$$
0%
$$3$$
Explanation
$$\begin{vmatrix} 2^{ 3 } & 3^{ 3 } & 3.2^{ 2 }+3.2+1 \\ 3^{ 3 } & 4^{ 3 } & 3.3^{ 2 }+3.3+1 \\ 4^{ 3 } & 5^{ 3 } & 3.4^{ 2 }+3.4+1 \end{vmatrix}$$
$$ C_{1}\rightarrow C_{1}+C_{2}$$
$$=\begin{vmatrix} 2^{ 3 } + 3.2^{ 3 }+3.2+1 & 3^{ 3 }& 3.2^{2}+3.2+1 \\ 3^{ 3 } +3.3^{2}+3.3+1& 4^{ 3 } & 3.3^{ 2 }+3.3+1 \\ 4^{ 3 }+3.4^{2}+3.4+1 & 5^{ 3 } & 3.4^{ 2 }+3.4+1 \end{vmatrix}$$
$$=\begin{vmatrix} 3^{ 3 } & 3^{ 3 } & 3.2^{ 2 }+3.2+1 \\ 4^{ 3 } & 4^{ 3 } & 3.3^{ 2 }+3.3+1 \\ 5^{ 3 } & 5^{ 3 } & 3.4^{ 2 }+3.4+1 \end{vmatrix}$$
$$ = 0$$
Find $$ \begin{vmatrix}\log e & \log e^{2} & \log e^{3} \\ \log e^{2} & \log e^{3} & \log e^{4} \\ \log e^{3} & \log e^{4} & \log e^{5}\end{vmatrix}$$.
Report Question
0%
$$0$$
0%
$$1$$
0%
$$4 \log e$$
0%
$$5 \log e$$
Explanation
As we know that, $$loge^n=nloge$$
So, We can write given Determinant as
$$\begin{vmatrix}log e & 2log e & 3log e \\ 2log e & 3log e & 4log e \\ 3log e &\ 4log e & 5log e \end{vmatrix}=(loge)^3\begin{vmatrix}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix}$$ .... [Taking $$loge$$ common from each row]
Expanding the Given Determinant , we get
$$=(loge)^3|(15-16)-2(10-12)+3(8-9)|=(loge)^3\times 0=0$$
If $$\left| {\begin{array}{*{20}{c}}1&3&2\\1&{x - 1}&{2x + 2}\\2&5&9\end{array}} \right| = 0$$, then $$x$$ is equal to :-
Report Question
0%
$$2$$
0%
$$1$$
0%
$$4$$
0%
$$0$$
Explanation
Given, $$\left| {\begin{array}{*{20}{c}}1&3&2\\1&{x - 1}&{2x + 2}\\2&5&9\end{array}} \right| = 0$$
$$\begin{array}{l}\left| {\begin{array}{*{20}{c}}1&3&2\\1&{x - 1}&{2x + 2}\\2&5&9\end{array}} \right|\\{R_2} = {R_2} - {R_1}\\{R_3} = {R_3} - 2{R_1}\\\left| {\begin{array}{*{20}{c}}1&3&4\\0&{x - 4}&{2x - 2}\\0&{ - 1}&1\end{array}} \right|\\\left| {\begin{array}{*{20}{c}}{x - 4}&{2x - 2}\\{ - 1}&1\end{array}} \right| = 0\\x - 4 + 2x - 2 = 0\\3x - 6 = 0\\x = 2\end{array}$$
If $$\Delta = \begin{vmatrix} x-3 & 2x+1 & 2 \\ 3x+2 & x+2 & 1 \\ 5x+1 & 5x+4 & 5 \end{vmatrix} $$, then $$ \Delta$$ is
Report Question
0%
multiple of $$x^2$$
0%
$$15$$
0%
a multiple of $$x$$
0%
$$-15$$
Explanation
$$\left| \begin{matrix} x-3 & 2x+1 & 2 \\ 3x+2 & x+2 & 1 \\ 5x+1 & 5x+4 & 5 \end{matrix} \right| $$
$$=\cfrac { 1 }{ 2 } \left| \begin{matrix} 2(x-3) & 2(2x+1) & 2(2) \\ 3x+2 & x+2 & 1 \\ 5x+1 & 5x+4 & 5 \end{matrix} \right| $$
$$=\cfrac { 1 }{ 2 } \left| \begin{matrix} 2x-6 & 4x+2 & 4 \\ 3x+2 & x+2 & 1 \\ 5x+1 & 5x+4 & 5 \end{matrix} \right| $$
Apply $$R_{1}\rightarrow R_{1}+R_{2}-R_{3}$$
$$=\cfrac { 1 }{ 2 } \left| \begin{matrix} -5 & 0 & 0 \\ 3x+2 & x+2 & 1 \\ 5x+1 & 5x+4 & 5 \end{matrix} \right| $$
$$=\cfrac{1}{2}\times (-5)\left \{ 5(x+2)-1(5x+4)\right \}$$
$$=\cfrac{-5}{2}\times 6$$
$$=-15$$
Find the determinant of given matrix $$\left[ \begin{matrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{matrix} \right] $$
Report Question
0%
$$2(a+b+c)^{3}$$
0%
$$(a-b-c)^{3}$$
0%
$$2(a-b-c)^{3}$$
0%
$$(a+b+c)^{3}$$
Explanation
$$\left| \begin{matrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{matrix} \right| $$
$$ =\left| \begin{matrix} a+b+c & a+b+c & a+b+c \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{matrix} \right| { R }_{ 1 }\rightarrow { R }_{ 1 }+{ R }_{ 2 }+{ R }_{ 3 }$$
Taking out common $$a+b+c$$ from $${R_1}$$
$$=\left( a+b+c \right) \left| \begin{matrix} 1 & 1 & 1 \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{matrix} \right|$$
$$ =\left( a+b+c \right) \left| \begin{matrix} 1 & 0 & 0 \\ 2b & -\left( a+b+c \right) & 0 \\ 2c & 0 & -\left( a+b+c \right) \end{matrix} \right| { R }_{ 2 }\rightarrow { R }_{ 2 }-{ R }_{ 1 },{ R }_{ 3 }\rightarrow { R }_{ 3 }-{ R }_{ 1 }$$
Expanding along $${R_1}$$
$$={ \left( a+b+c \right) }^{ 3 }$$
If $$\triangle =\begin{bmatrix} { a }_{ 1 } & { b }_{ 1 } & { c }_{ 1 } \\ { a }_{ 2 } & { b }_{ 2 } & { c }_{ 2 } \\ { a }_{ 3 } & { b }_{ 3 } & { c }_{ 3 } \end{bmatrix}$$ and $${A}_{2},{B}_{2},{C}_{2}$$ are respectively cofactors of $${a}_{2},{b}_{2},{c}_{2}$$ then $${a}_{1}{A}_{2}+{b}_{1}{B}_{2}+{c}_{1}{C}_{2}$$ is equal to ?
Report Question
0%
$$-\triangle$$
0%
$$0$$
0%
$$\triangle$$
0%
$$none\ of\ these$$
Explanation
Co-factor of $$ \displaystyle a_2 = (-1)^{i+j}\left|\begin{matrix} b_1 & c_1 \\ b_3 & c_3 \end{matrix}\right| = - [b_1 \, c_3 - c_1 \, b_3] = A_2 $$
i=2 j=1
of $$ \displaystyle b_2 = (-1)^{2+2} \left|\begin{matrix} a_1 & c_1 \\ a_3 & c_3 \end{matrix}\right| = [a_1 \, c_3 - c_1 \, a_3] = B_2 $$
of $$ \displaystyle c_2 = (-1)^{2+3} \left|\begin{matrix} a_1 & b_1 \\ a_3 & b_3 \end{matrix}\right| = -[a_1 \, b_3 \, - b_1 \, a_3 ] = C_2 $$
$$ a_1 \, A_2 + b_1 \, B_2 +c_1 \, C_2 $$
$$ \displaystyle -a_1 \, b_1 \, c_3 + a_1 \, c_1 \, b_3 + b_1 \, a_1 \, c_3 - b_1 c_1 \, a_3 -c_1 \, a_1 \, b_3 + c_1 \, b_1 \, a_3 $$
$$ \displaystyle = 0 $$
the below matrix relation is
$$\begin{vmatrix} 1 & { a }^{ 2 } & { a }^{ 3 } \\ 1 & { b }^{ 2 } & { b }^{ 3 } \\ 1 & { c }^{ 2 } & { c }^{ 3 } \end{vmatrix}=\begin{vmatrix} 0 & { a }^{ 2 }-{ c }^{ 2 } & { a }^{ 3 }-{ c }^{ 3 } \\ 0 & { b }^{ 2 }-{ c }^{ 2 } & { b }^{ 3 }-{ c }^{ 3 } \\ 1 & { c }^{ 2 } & { c }^{ 3 } \end{vmatrix}$$
$$=\left( a-b \right) \left( b-c \right) \begin{vmatrix} 0 & { a }-{ c } & { a }^{ 2 }+ac{ +c }^{ 2 } \\ 0 & { b }-{ c } & { b }^{ 2 }+bc+{ c }^{ 2 } \\ 1 & { c }^{ 2 } & { c }^{ 3 } \end{vmatrix}$$
Report Question
0%
True
0%
False
Let the matrix A and B be defined as $$A = \left( {\matrix{
3 & 2 \cr
2 & 1 \cr
} } \right)$$ and $$B = \left( {\matrix{
3 & 1 \cr
7 & 3 \cr
} } \right)$$ then the value of $$Det.\left( {2{A^9}{b^{ - 1}}} \right),$$ is
Report Question
0%
2
0%
1
0%
-1
0%
-2
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
0
Not Answered
0
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page