Processing math: 100%

CBSE Questions for Class 12 Commerce Maths Determinants Quiz 8 - MCQExams.com

If xayb=em,xcyd=en,1=|mbnd|,2=|amcn| and 3=|abcd| the value of x and y are respectively
  • 13 and 23
  • 21 and 31
  • log(13)andlog(23)
  • e1/3 and e2/3
The value of 1xy|1003x315y31| is-
  • x+y
  • x2xy+y2
  • x2+xy+y2
  • x3y3
One of the roots of |x+abcax+bcabx+c|=0 is
  • abc
  • a+b+c
  • (a+b+c)
  • abc
Three straight lines 2x+11y5=0,24x+7y20=0 and 4x3y2=0
  • form a triangle
  • are only congruent
  • are concurrent with one line bisecting the angle between the other two
  • None of above
If Δ=|x2yzzy2xzzy2yz2x2yz|,then
  • x-y is a factor of Δ
  • (xy)2 is a factor of Δ
  • (x-y)^3 is a factor of Δ
  • Δ is independent of z
For distinct numbers a,b,c,x,y,z ϵR if Δ1|(ax)2(bx)2(cx)2(ay)2(by)2(cy)2(az)2(bz)2(cz)2|Δ2|(ax+1)2(bx+1)2(cx+1)2(ay+1)2(by+1)2(cy+1)2(az+1)2(bz+1)2(cz+1)2| then Δ21Δ22+Δ22Δ21=
  • 54
  • 103
  • 14
  • None of these
Let Δ=|sinθcosϕsinθsinϕcosθcosθcosϕcosθsinϕsinθsinθsinϕsinθcosϕ0|, then
  • Δ is independent of θ
  • Δ is independent of ϕ
  • Δ is a constant
  • none of these
The determinant Δ=|a2(1+x)abacabb2(1+x)bcacbcc2(1+x)| is divisible by
  • (x+3)
  • (1+x)2
  • x2
  • (x2+1)
The determinant Δ=|bcbα+ccdcα+dbα+ccα+daα3cα| is equal to zero if 
  • b,c,d are in A.P
  • b,c,d are in G.P
  • b,c,d are in H.P
  • α is a root of ax3bx23cxd=0
Find the values of a and b so that the points (a,b,3),(2,0,1) and (1,1,3) are collinear.
  • a=4,b=2
  • a=0,b=2
  • a=4,b=2
  • a=4,b=2
Δ=|0i100i500100i01000i500ii10000| is equal to
  • 100
  • 500
  • 1000
  • 0
Let A=|abcpqrxyz| and suppose that det.(A) =2 then the det.(B) equals, where B=|4x2ap4y2bq4z2ct| 
  • det(B)=2
  • det(B)=8
  • det(B)=16
  • det(B)=8
The value of determinant |a2a1cos(nx)cos(n+1)xcos(n+2)xsin(nx)sin(n+1)xsin(n+2)x| is independent of 
  • n
  • a
  • x
  • a , n and x
In |127375143|, cofactor of 2=___________ and cofactor of -1=___________.
  • 4,59
  • 4,59
  • 4,59
  • 59,4
If f(x)=|x32x2183x381x52x2504x3500123| then f(1).f(3)+f(3).f(5)+f(5).f(1) is equal to-
  • f(1)
  • f(3)
  • f(1)+f(3)
  • f(1)+f(5)
The points (X1,Y1), (X2,Y2), (X1,Y2) and (X2,Y1) are always
  • Collinear
  • Concyclic
  • Vertices of a square
  • Vertices of rectangle
If a,b,c are non-zeros, then the system of equation : (α+a)x+α+αz=0; αx+(a+b)y+αz=0; αx+αy+(α+c)z=0 has a non-trivial solution if
  •  1α=(1a+1b+1c)
  • α1=a+b+c
  • α+a+b+c=1
  • None of the above
If pλ4+pλ3+pλ2+sλ+t= |λ2+3λλ+1λ+3λ+12λλ4λ3λ+43λ|, then value of t is 
  • 16
  • 18
  • 17
  • 19
State whether following statement is true or false.
If A is a square matrix of order n, then |Adj(AdjA)| is of order (n2).
  • True
  • False
A=[55αα0α5α005]; If |A2|=25, then |α|=
  • 5
  • 52
  • 1
  • 15
the following relation is |aa+ba+b+c2a3a+2b4a+3b+2c=a33a6a+2b10a+6b+3c|=a3 
  • True
  • False
If |λ2+3λλ1λ+3λ+12λλ4λ3λ+43λ|=pλ4+qλ3+rλ2+sλ+t then t=
  • 16
  • 17
  • 18
  • 19
|1abca21bcab21cabc2| is equal to -
  • (ab)(bc)(ca)
  • abc(ab)(bc)(ca)
  • 0
  • 1
|logeloge2loge3loge2loge3loge4loge3loge4loge5|=?
  • 0
  • 1
  • 4 log e
  • 5 log e
If f(x)=|1xx+12xx(x1)(x+1)x3x(x1)x(x1)(x2)(x+1)x(x1)| then f(100) is equal to?
  • 0
  • 1
  • 100
  • 100
the value of the determinant of order 3 remains unchanged if its rows and columns are interchanged. that statement is ___
  • True
  • False
If none of a,b,c is zero,  Whether the given equation  |bcb2+bcc2+bca2+acacc2+aca2+abb2+abab|=(bc+ca+ab)3 is ?

  • True
  • False
The value of the determinant |b2abbcbcacabb2abb2abbcaccaabb2|
  • abc
  • a+b+c
  • 0
  • ab+bc+ca
if a>0 and discriminant of ax2+2bx+c is ve, then |abax+bbcbx+cax+bbx+c0| is
  • +ve
  • (acb2)(ax2+2bx+c)
  • ve
  • 0
|13+325515+265103+65155|= 
  • 152253
  • 155256
  • 252153
  • 0
The value of |1+ww2w1+w2ww2w2+www2| is equal to 
  • 0
  • 2ω
  • 2ω2
  • 3ω2
If the points A(at21,2at1),B(at22,2at2) and C(α,0) are collinear, then t1t2 equals
  • 2
  • 1
  • 1
  • None of these
Let F(x)=|||11+sin x1+sin x+cos x23+2 sin x4+3 sin x+2 cos x36+3 sin x10+6 sin x+3 cos x|  then F (π2) is equal to
  • 1
  • 0
  • 1
  • 2
If A=[a000a000a] then find the value of |A||adjA|
  • a3
  • a6
  • a9
  • a
If |1+x2312+x3123+x|=0 then x=
  • 1
  • 1
  • 6
  • 6
If A=[abcpqr]3×2 then determinant (AAT) is equal to
  • 0
  • a2+b2+c2
  • p2+q2+r2
  • p2+q2
If t1,t2 and t3 distinct. and the points (t1.2at1+at13).(t2.2at2+at23),(t3.2at3+at33) are collinear, then t1+t2+t3=
  • t1t2t3=1
  • t1+t2+t3=t1t2t3
  • t1+t2+t3=0
  • t1+t2+t3=1
Using properties of determinants it can be proved
|b+caabc+abcca+b|=4abc
  • True
  • False
If Δ=|11111+x1111+y| for x0,y0 then Δ is
  • Divisible by neither x nor y
  • Divisible by both x and y
  • Divisible by x but not y
  • Divisible by y but not x
If A=[111023210],B=(adjA) and C=5A, then |adjB||C| is equal to
  • 5
  • 25
  • 1
  • 1
Find the value of the determinant |1002cosxsinx3sinxcosx|.
  • cos2x
  • 1
  • 0
  • sin2x
If the points (k,22k), (1k,2k) and (k4,62k) be collinear, the number of possible values of k are 
  • 4
  • 2
  • 1
  • 3
If A=[122221212] then A1=
  • A
  • 19AT
  • 19A
  • 19A1
The determinant [b1+c1c1+a1a1+b1b2+c2c2+a2a2+b2b3+c3c3+a3a3+b3]=_____
  • [a1b1c1a2b2c2a3b3c3]
  • 2[a1b1c1a2b2c2a3b3c3]
  • 3[a1b1c1a2b2c2a3b3c3]
  • 4[a1b1c1a2b2c2a3b3c3]
In a triangle ABC, with usual notations, if |1ab1ca1bc|=0, then 4sin2A+24sin2B+36sin2C is equal to 
  • 48
  • 50
  • 44
  • 34
If adj A=[20201010] , then |A|=..... 
  • 400
  • 200
  • ±20
  • 0
29 If z=[0110] where 0, I are 2x2 null and identity matrix then det ([z]) is  _______________.
  • 1
  • -1
  • 0
  • None of these
Sum of the real roots of the equation |142012512x5x2|=0 is
  • 2
  • 1
  • 0
  •  1
The cofactor of the element 4 in the determinant |1351234280110211| is?
  • 4
  • 10
  • 10
  • 4
Find the values of x if, |142012512x5x2|=0
  • 1,2
  • 1,2
  • 1,2
  • 1,2
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers