Processing math: 100%

CBSE Questions for Class 12 Commerce Maths Differential Equations Quiz 10 - MCQExams.com

Solution of the differential equation {1xy2(xy)2}dy+{y2(xy)21y}dx=0  is
  • ln|xy|+xyxy=c
  • xyxy=cex/y
  • ln|xy|=c+xyxy
  • none of these
The solution of the differential equation x2dydxcos(1x)ysin(1x)=1;where y1 as x is 
  • y=sin(1x)cos(1x)
  • y=x+1xsin(1x)
  • y=cos(1x)+sin(1x)
  • y=x+1xcos(1x)
The solution of the differential equation dydx=x2+y2+12xy satisfying y(1)=1, is
  • a hyperbola
  • a circle
  • y2=x(1+x)10
  • (x2)2+(y3)2=5
The general solution of differential equation dydx=sin3xcos2x+xex
  • y=15cos5x+13csc3x+(x+1)ex+c
  • y=15cos5x13csc3x+(x1)ex+c
  • y=15cos5x13csc3x(x1)exc
  • None of these
The value of limx y(x) obtained from the differential equation dydx=yy2, where y(0) = 2 is 
  • 1
  • -1
  • 0
  • 22e
The solution of the differential equation dydx+1xtany=tanysinyx2 is 
  • 1xcosy=12x2+K
  • 1xcoty=12x2+K
  • 1xcscy=12x2+K
  • 1xcosx=12x2+K
The solution of the differential equation (3xy+y2)dx+(x2+xy)dy=0 is
  • x2(2x+y)=3
  • y2(2x+y)=3
  • x2y(2x+y)=3
  • x2y(2x+3)=9
The solution of the differential equation (x2+1)dydx+y2+1=0, is  [ify(0)=1]
  • y=2+x2
  • y=(1+x)(1x)
  • y=x(x1)
  • y=(1x)(1+x)
The solution of differential equation dydx=x(2lnx+1)siny+ycosy is
  • ysiny=xlnx+c
  • ysiny=x2lnx+c
  • siny=x2lnx+c
  • ycosy=x2lnx+c
The equation of a curve passing through the point (0, 0) and whose differential equation is y=exsinx is 
  • 2y1=ex(sinxcosx)
  • 2y1=ex(cosxsinx)
  • 2y+1=ex(cosxsinx)
  • Noneofthese
Solution of the differential equation yex/ydx=(xexy+y2)dy(y0) is ?
  • ex/y=x+C
  • ex/y+x=C
  • ey/x=x+C
  • ex/y=y+C
Solution of differential equation xdy=(yx2y2)dx is (where c is arbitrary constant)
  • y=xcos(c+x)
  • y=xtan(xc)
  • y=xcsc(c+x)
  • none of these
Let y=y(x) be the solution of the differential equation (1x2)dydxxy=1,x(1,1) if y(0)=0, then y(12) is equal to
  • π33
  • π3
  • π6
  • π3
If the general solution of the differential equation if y=yx+Φ(xy), for some function Φ, is given by yin|cx|=x, where c is an arbitrary constant, then Φ (2) is equal to :
  • 4
  • 14
  • -4
  • 14
(2y+xy3)dx+(x+x2y2)dy=0 solution of differential equation is 
  • 3x2y+x3y2=c
  • 3x2y2+xy2=c
  • yx2+xy3=c
  • x2y+x3y33=c
Solution of differential equation x6dy+3x5ydx=xdy2y dx is
  • x3y=yx2+C
  • x3y=2yx2+C
  • x3y2=yx2+C
  • x3=yx2+C
The solution of equation dydx=1x+y+1
  • x=ceyy2
  • y=x+cey2
  • x+cey22=0
  • y=x
Let y=y(x) be the solution of the differential equation sinxdydx+ycosx=4x,x  (0,π), if y(π2)=0, then y(π6) is equal to
  • 49π2
  • 492π2
  • 892π2
  • 89π2
Solution of the differential equation dr=a(rsinθdθcosθdr) is 
  • r(1+acosθ)=c
  • r(1+acosθ)=ac
  • r(1acosθ)=c
  • r(1acosθ)=ac
The solutions of the differential equation  dydx=siny+xsin2yxcosy is 

  • sin2y=xsiny+x22+c
  • sin2y=xsinyx22+c
  • sin2y=x+siny+x22+c
  • sin2y=xsiny+x22+c
The general solution of the differential equation dydx+sinx+y2=sinxy2 is
  • log(tany2)=c2sinx
  • log(tany4)=c2sin(x2)
  • log(tan(y2+π4))=c2sinx
  • None of the above
If y(x) is the solution of the differential equation (x+2)dydx=x2+4x9,x2 and y(0)=0, then y(4) is equal to 
  • 0
  • 1
  • 1
  • 2
The solution of differential equation,(x+tany)dy=sin2ydx is
  • xcoty=12log|cosec2ycot2y|+c
  • x=tany+ctany
  • x=coty+ccoty
  • None of these
If a curve y=f(x) passes through the point (1,1) and satisfies the differential equation, y(1+xy)dx=xdy, then f(12) is equal to
  • 45
  • 25
  • 45
  • 25
General solution of differential equation x2(x+ydydx)+(xdydxy)x2+y2=0 is
  • 1x2+y2+yx=c
  • x2+y2yx=c
  • x2+y2+yx=c
  • 2x2+y2+yx=c
  • 1x2+y2yx=c
Solution of the differential equation dydx=y(1+x)x(y1) is
  • log|xy|+xy=C
  • log|xy|x+y=C
  • log|xy|+x+y=C
  • log|xy|xy=C
Solution of (x+y1)dx+(2x+2y3)dy=0 is 
  • y+x+log(x+y2)=c
  • y+2x+log(x+y2)=c
  • 2y+x+log(x+y2)=c
  • 2y+2x+log(x+y2)=c
The solution of xdyx2+y2=(yx2+y21)dx is 
  • y=xcot(cx)
  • cos1u/x=x+C
  • y=xtan(cx)
  • y2/x2=xtan(cx)
General solution of differential equation x2dy+y(x+y)dx=0 is 
  • 2x+y=Ax2Y
  • 2xy=Ax2y
  • 2x+y=Ax2y
  • x2y=Ax2y
If y(t) is solution of (t+1)dydtty=1,y(0)=1, then y(1)=
  • 14
  • 2
  • 12
  • 12
Solution of the differential equation cosxdy=y(sinxy)dx,0<x<π2 is
  • y sec x= tan x + c
  • y sec x= sec x + c
  • y sec x= (sec x + c) y
  •  sec x= y (tan x + c) 
The solution of the differential equation ydxxdy+3x2y2ex3dx=0 is
  • xy+ex3=c
  • xyex=c
  • xy+exx3x2y=c
  • xyex3=c
Solution of the equation (x+y)2dydx=4,y(0)=0 is
  • y=2tan1(x+y2)
  • y=4tan1(x+y4)
  • y=4tan1(x+y2)
  • y=2tan1(x+y4)
The solution of the differential equation log(dydx)=4x2y2,y=1 when x=1 is
  • 2e2y+2=e4x+e2
  • 2e2y2=e4x+e2
  • 2e2y+2=e4x+e4
  • 3e2y+2=e3x+e2
the solution of ydxxdy+3x2y2ex3dx=0 is
  • xy+ex3=C
  • xyex3=0
  • xy+ex3=C
  • none of these
The solution of the differential equation (x+2y3)dydx=y is 
  • xy2=y+C
  • xy=y2+C
  • x2y=y2+C
  • xy=x2+C
General solution of the differential equation (x+y-2) dy=(x+y) dx is 
  • y+x=log(y-x+1)+c
  • y-x log (x+y-1)+c
  • y-2x=log (x+y-1)+c
  • y+2x=log (x+y+1)+c
The solution of x2dyy2dx+xy2(xy)dy=0 is?
  • ln|xyxy|=y22+c
  • ln|xyxy|=x22+c
  • ln|xyxy|=x22+c
  • ln|xyxy|=x+c
Solution of (1+xy)ydx+(1xy)xdy=0 is 
  • logxy+1xy=c
  • logxy=c
  • logxy1xy=c
  • logyx1xy=c
The general solution of the differential equation yxdydx=y2cosx(1sinx) is
  • y(sinx+c)=tanx+secx
  • y(sinx+c)=tanxsecx
  • xy=sinx+14cos2x+c
  • xy=sinx+18cos2x+c
Solution of  dydx+2xy=y  is
  • y=cexx2
  • y=cex2x
  • y=cex
  • y=cex2
Let =y(x) be the solution of the differential equation, xdydx+y=xlogex,(x>1). If 2y(2)=loge41, then y(e) is equal to :
  • e22
  • e4
  • e24
  • e24
The solution of the Differential Equation (x+y)(dxdy)=dx+dy is
  • l n(xy)=x+y+C
  • l n(x+y)=xy+C
  • l n(xy)=xyC
  • none of these
The integrating factor of the equation y2dx+(3xy1)dy=0 is
  • y2
  • y3
  • 1y2
  • 1y3
The solution of the differential equation dydx=sec(x+y) is 
  • ytanx+y2=c
  • y+tanx+y2=c
  • y+2tanx+y2=c
  • None of these
The solution of differential equation dy/dxy/x+tany/x is:
  • x=Ccos(y/x)
  • x=Csin(y/x)
  • x=Ccsc(y/x)
  • none of these
The solution of the equation dydx=(1+x)y(y1)x is:
  • logxy+x+y=c
  • log(xy)+xy=c
  • yxlogxy=c
  • None of these
Solution of (dydx)2+xdydxy=0 is
  • y=3x2+9
  • y=3x+9
  • y=43x2
  • y=9x+3
Number of values of m N, for which y=emx is a solution of the differential equation D3y3D2y4Dy+12y=0, is?
  • 0
  • 1
  • 2
  • More than 2
The solution the differential equation (dydx)2dtdx(ex+ex)+1=0 is/are 
  • y+ex=c
  • yex=c
  • y+ex=c
  • yex=c
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers