Explanation
dydx=logxloge
⇒dy=logxlogedx
⇒∫dy=∫logex+c
⇒y=x(logex−1)+c [∵∫logx=x(logx−1)]
xex2dx=ye−ydy
⇒12∫2xex2dx=∫ye−ydy
⇒ex22=−ye−y+(e−ydy)
ex22=−ye−y−e−y+c
⇒ex2+e−y(1+y)2=c
Given \sin^{-1}ydx+\displaystyle \dfrac{x}{\sqrt{1-y^{2}}}dy=0
-\dfrac{dx}{x} = \dfrac{dy}{sin^{-1}y \sqrt{1-y^{2}}}
let \sin ^{-1}y = t
\Rightarrow \dfrac{1}{\sqrt{1-y^{2}}}dy = dt
\Rightarrow -\int \dfrac{dx}{x} = \int \dfrac{dt}{t} - log c
\Rightarrow log c = log xt
\Rightarrow c=xt
\Rightarrow t = \dfrac{c}{x}
sin ^{-1}y = \dfrac{c}{x}
\Rightarrow y = sin (\dfrac{c}{x})
Please disable the adBlock and continue. Thank you.