MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Matrices Quiz 12 - MCQExams.com
CBSE
Class 12 Commerce Maths
Matrices
Quiz 12
If $$A=\left[ \begin{matrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{matrix} \right] $$, then $$A^{2}-4\ A$$ is equal to
Report Question
0%
$$2\ I_3$$
0%
$$3\ I_3$$
0%
$$4\ I_3$$
0%
$$5\ I_3$$
If $$A$$ and $$B$$ are square matrices such that $$B=-A^{-1}BA$$, then
Report Question
0%
$$AB+BA=0$$
0%
$$(A+B)^{o}=A^{2}+B^{2}$$
0%
$$(A+B)^{2}=A^{2}+2AB+B^{2}$$
0%
$$(A+B)^{2}=A+B$$
If $$A=\left[ \begin{matrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{matrix} \right] $$ and $$10B=\left[ \begin{matrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{matrix} \right] $$ where $$B=A^{-1}$$ then $$\alpha$$ is equal to-
Report Question
0%
$$2$$
0%
$$-1$$
0%
$$-2$$
0%
$$5$$
The inverse of the matrix $$\left[ \begin{array} { c c c } { 1 } & { 0 } & { 0 } \\ { 3 } & { 3 } & { 0 } \\ { 5 } & { 2 } & { - 1 } \end{array} \right]$$ is
Report Question
0%
$$- \dfrac { 1 } { 3 } \left[ \begin{array} { c c c } { - 3 } & { 0 } & { 0 } \\ { 3 } & { 1 } & { 0 } \\ { 9 } & { 2 } & { - 3 } \end{array} \right]$$
0%
$$- \dfrac { 1 } { 3 } \left[ \begin{array} { c c c } { - 3 } & { 0 } & { 0 } \\ { 3 } & { - 1 } & { 0 } \\ { - 9 } & { - 2 } & { 3 } \end{array} \right]$$
0%
$$- \dfrac { 1 } { 3 } \left[ \begin{array} { c c c } { 3 } & { 0 } & { 0 } \\ { 3 } & { - 1 } & { 0 } \\ { - 9 } & { - 2 } & { 3 } \end{array} \right]$$
0%
$$- \dfrac { 1 } { 3 } \left[ \begin{array} { c c c } { - 3 } & { 0 } & { 0 } \\ { - 3 } & { - 1 } & { 0 } \\ { - 9 } & { - 2 } & { 3 } \end{array} \right]$$
If $$A$$ is a $$2\times 2$$ matrix such that $$A^{2}-4A+3I=0$$, then the inverse of $$A+3I$$ is equal to
Report Question
0%
$$\dfrac{1}{24}S-\dfrac{7}{24}I$$
0%
$$\dfrac{1}{21} A-\dfrac{7}{21}I$$
0%
$$\dfrac{7}{24}I+\dfrac{1}{24}A$$
0%
$$A-3I$$`
Let A be a $$3\times 3$$ matrix such that
$$A\left[ \begin{matrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 1 & 1 \end{matrix} \right] =\left[ \begin{matrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{matrix} \right] $$ Then $${ A }^{ -1 }$$.
Report Question
0%
$$\left[ \begin{matrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 2 & 3 \end{matrix} \right] $$
0%
$$\left[ \begin{matrix} 3 & 1 & 2 \\ 3 & 0 & 2 \\ 1 & 0 & 1 \end{matrix} \right] $$
0%
$$\left[ \begin{matrix} 3 & 2 & 1 \\ 3 & 2 & 0 \\ 1 & 1 & 0 \end{matrix} \right] $$
0%
$$\left[ \begin{matrix} 0 & 1 & 3 \\ 0 & 2 & 3 \\ 1 & 1 & 1 \end{matrix} \right] $$
Inverse of $$\begin{bmatrix} -1 & 5 \\ -3 & 2 \end{bmatrix}$$ is
Report Question
0%
$$\begin{bmatrix} 2/13 & -5/13 \\ 3/13 & -1/13 \end{bmatrix}$$
0%
$$\begin{bmatrix} -2/13 & 5/13 \\ -3/13 & 1/13 \end{bmatrix}$$
0%
$$\begin{bmatrix} 2 & -5 \\ 3 & -1 \end{bmatrix}$$
0%
$$Cannot\ be\ determined$$
If $$A=\left[ \begin{matrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{matrix} \right] { A }^{ 1 }$$ is given by:
Report Question
0%
$$-A$$
0%
$${ A }^{ 1 }$$
0%
$${ -A }^{ 1 }$$
0%
$$A$$
If $$\begin{bmatrix} 1 & -\tan { \theta } \\ \tan { \theta } & 1 \end{bmatrix}{ \begin{bmatrix} 1 & -\tan { \theta } \\ \tan { \theta } & 1 \end{bmatrix} }^{ -1 }={ \begin{bmatrix} \cos { \alpha } & -\sin { \alpha } \\ \sin { \alpha } & \cos { \alpha } \end{bmatrix} }^{ -1 }$$, then $$\alpha $$=
Report Question
0%
$$0$$
0%
$$\frac { \pi }{ 2 } $$
0%
$$\frac { \pi }{ 4 } $$
0%
$$\frac { \pi }{ 6 } $$
A is a $$2\times 2$$ matrix such that $$A\begin{bmatrix} 1 & \\ & -1 \end{bmatrix}=\begin{bmatrix} 1 & \\ 0 & \end{bmatrix}$$ and $${ A }^{ 2 }\begin{bmatrix} 1 & \\ & -1 \end{bmatrix}=\begin{bmatrix} 1 & \\ 0 & \end{bmatrix}$$. The sum of the elements f A, is
Report Question
0%
-1
0%
0
0%
2
0%
5
Let A be a $$3 \times 3$$ matrix such that is: $$A\left[ \begin{matrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 1 & 1 \end{matrix} \right]=\left[ \begin{matrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{matrix} \right] $$Then $$A^{-1}$$ is
Report Question
0%
$$\left[ \begin{matrix} 0 & 1 & 3 \\ 0 & 2 & 3 \\ 1 & 1 & 1 \end{matrix} \right] $$
0%
$$\left[ \begin{matrix} 3 & 2 & 1 \\ 3 & 2 & 0 \\ 1 & 1 & 0 \end{matrix} \right] $$
0%
$$\left[ \begin{matrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 2 & 3 \end{matrix} \right] $$
0%
$$\left[ \begin{matrix} 3 & 1 & 2 \\ 3 & 0 & 2 \\ 1 & 0 & 1 \end{matrix} \right] $$
If $$A=[x \quad y],B=[_{ h } ^{ a }\quad _{ b } ^{ h }],C=[_{ y } ^{ x }]$$, then $$ABC = $$ ___.
Report Question
0%
$$({ ax }+hy+{ bxy })$$
0%
$$({ ax }^{ 2 }+2hxy+{ by }^{ 2 })$$
0%
$$({ ax }^{ 2 }-2hxy+{ by }^{ 2 })$$
0%
$$({ bx }^{ 2 }-2hxy+{ ay }^{ 2 })$$
If $$A=\begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$$ and $$B=\begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$$ then the value of $$\alpha $$ for which $$A^2=b$$ is
Report Question
0%
1
0%
-1
0%
4
0%
no real value
If a , b and c are all different from zero such that $$\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = 0$$, then the matrix A = $$\begin{vmatrix} 1 + a & 1 & 1 \\ 1 & 1 + b & 1 \\ 1 & 1 & 1 + c \end{vmatrix}$$ is -
Report Question
0%
symmetric
0%
non-singular
0%
can be written as sum of a symmetric and a skew symmetric matrix
0%
none of these
If $$\displaystyle \begin{bmatrix} a & b \\ -a & 2b \end{bmatrix}\left[ \begin{matrix} 2 \\ -1 \end{matrix} \right] =\left[ \begin{matrix} 5 \\ 4 \end{matrix} \right] $$ then $$(a,b)$$ is
Report Question
0%
$$(1,-3)$$
0%
$$(-3,1)$$
0%
$$(1,3)$$
0%
$$(-1,3)$$
Matrix A when multiplied with Matrix C gives the Identity matrix I, what is C?
Report Question
0%
Identity matrix
0%
Inverse of A
0%
Square of A
0%
Transpose of A
For each real $$ x, -1 < x < 1 . $$ let A (x) be the matrix $$(1-x)^{-1} \begin{bmatrix} 1 & -x \\ -x & 1 \end{bmatrix} $$ and z = $$ \dfrac { x +y }{ 1 +xy} $$. then
Report Question
0%
$$ A (z) = A(x) A(y) $$
0%
$$ A (z) = A(x) - A(y) $$
0%
$$ A(z) = A(x) + A(y ) $$
0%
$$ A(z) = A(x) [ A (y)]^{-1} $$
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
0
Answered
0
Not Answered
0
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page