Processing math: 10%

CBSE Questions for Class 12 Commerce Maths Matrices Quiz 2 - MCQExams.com

If A=[234348], B=[147325] and A+B=[1abc213], then find the value of a+b+c.
  • 12
  • 21
  • 15
  • 5
If A=[3112], Then A2
  • [8553]
  • [8553]
  • [8553]
  • [8553]
If 2[345x]+[1y02]=[70105], then the values of x and y are :
  • x=0,y=2
  • x=32,y=8
  • x=2,y=8
  • x=2,y=8
If \begin{bmatrix} x & y \\ u & v \end{bmatrix} is symmetric matrix, then
  • x+v=0
  • x-v=0
  • y+u=0
  • y-u=0
If \displaystyle A=\begin{bmatrix}x &y \\z  &w \end{bmatrix},B=\begin{bmatrix}x &-y \\-z  &w \end{bmatrix} and C=\begin{bmatrix}-2x &0 \\0  &-2w \end{bmatrix}, then A+B+C is a:
  • identity matrix
  • null matrix
  • row matrix
  • column matrix
If matrix A is of order p\times q and matrix B is of order r\times s ,then A-B will exist if
  • p=q
  • p=r, q=s
  • p=q, r=s
  • p=s, q=r
If \displaystyle A=\left [ a_{ij} \right ]_{m\times\:n}, B=\left [ b_{ij} \right ]_{m\times\:n}, then the element \displaystyle C_{23} of the matrix C=A+B is 
  • \displaystyle C_{32}
  • \displaystyle a_{23}+b_{32}
  • \displaystyle a_{23}+b_{23}
  • \displaystyle a_{32}+b_{23}
If A-A'=0, then A' is
  • orthogonal matrix
  • symmetric matrix
  • skew-symmetric matrix
  • triangular matrix
For any square matrix A,  \  A+{A}^{T} is-
  • unit matrix
  • symmetric matrix
  • skew symmetric matrix
  • zero matrix
If \displaystyle  \begin{bmatrix} x & y   \\ 1 & 6   \end{bmatrix} \displaystyle  \begin{bmatrix} 1 & 8   \\ 1 & 6   \end{bmatrix}, then x+2y=
  • 13
  • 17
  • 19
  • None of these
If A= \displaystyle  \begin{bmatrix} 1 & 0   \\ 1 & 0   \end{bmatrix}   and B=\displaystyle  \begin{bmatrix} 1 & 0   \\ 0 & 1   \end{bmatrix}, then A+B=
  • A
  • B
  • \displaystyle \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}
  • \displaystyle \begin{bmatrix} 0 & 2 \\ 2 & 2 \end{bmatrix}
If A is any square matrix, then (A\, +\, A^T) is a ............ matrix 
  • symmetric
  • skew symmetric
  • scalar
  • identity
If A is a square matrix, then A-{A}^{T} is-
  • unit matrix
  • null matrix
  • A
  • a skew symmetric matrix
If \displaystyle  \begin{bmatrix} 2 & 3   \\ 4 & 4   \end{bmatrix} +\displaystyle  \begin{bmatrix} x & 3   \\ y & 1   \end{bmatrix} =\displaystyle  \begin{bmatrix} 10 & 6   \\ 8 & 5   \end{bmatrix}, then (x,y)=
  • (4,8)
  • (8,4)
  • (1,2)
  • (2,4)
For square matrix A, A{A}^{T} is-
  • unit matrix
  • symmetric matrix
  • skew symmetric matrix
  • diagonal matrix
IF A=\begin{bmatrix} -1 & 0 & 2 \\ 3 & 1 & 2 \end{bmatrix} and B=\begin{bmatrix} -1 & 5 \\ 2 & 7 \\ 3 & 10 \end{bmatrix}, then
  • AB and BA both exist
  • AB exists but bot BA
  • BA exists but not AB
  • but AB and BA do not exist
If A and B are symmetric matrices of order \displaystyle n,\left( A\neq B \right) , then
  • A+B is skew-symmetric
  • A+B is symmetric
  • A+B is a diagonal matrix
  • A+B is a zero matrix
If A is a skew symmetric matrix then  \displaystyle A^{T}  
  • -A
  • A
  • 0
  • diagonal matrix
If A= \begin{bmatrix} 1 & 2\end{bmatrix}, B=\begin{bmatrix} 3 & 4\end{bmatrix} then A+B=
  • \begin{bmatrix}1 & 4\end{bmatrix}
  • \begin{bmatrix}4 & 4\end{bmatrix}
  • \begin{bmatrix}4 & 6\end{bmatrix}
  • None of these
If A is matrix of order \displaystyle m\times n and B is a matrix of order \displaystyle n\times p, then the order of AB is 
  • \displaystyle p\times m
  • \displaystyle p\times n
  • \displaystyle n\times p
  • \displaystyle m\times p
Two matrices A and B are added if 
  • both are rectangular
  • both have same order
  • no of columns of A is equal to columns of B
  • no of rows of A is equal to no of columns of B
Find the output order for the following matrix multiplication A_{4 \times 2}\times B_{2\times4}?
  • 2 \times 4
  • 4 \times 4
  • 4 \times2
  • Multiplication not possible 
If the matrices A=\begin{bmatrix}2 & 1 & 3 \\4 & 1 & 0\end{bmatrix} and B=\begin{bmatrix}1 & -1\\ 0 & 2 \\5 & 0\end{bmatrix}, then AB will be
  • \begin{bmatrix}17 & 0 \\4 & -2\end{bmatrix}
  • \begin{bmatrix}4 & 0 \\ 0 & 4\end{bmatrix}
  • \begin{bmatrix}17 & 4 \\0 & -2\end{bmatrix}
  • \begin{bmatrix}0 & 0 \\0 & 0\end{bmatrix}
Least number of changes for the expression ax^{2} + bxy + cy^{2} + dx + ey + f to be symmetric in x and y is
  • a = b, c = d
  • b = c, e = f
  • a = c, d = e
  • a = f, b = e, c = d
What is the output for the following matrix multiplication A_{3 \times 2}\times B_{2\times 3}?
  • (AB)_{3\times 2}
  • (AB)_{3\times 3}
  • (AB)_{2\times 3}
  • (AB)_{2\times 2}
Find the output order for the following matrix multiplication X_{5 \times 3}\times Y_{3\times 5}?
  • 5 \times 5
  • 3 \times 5
  • 5 \times 3
  • 3 \times 3
Find the value in place of question mark in the following:
A_{6 \times 2}\times B_{2\times 6} = C_{?\times6}?
  • 2
  • 6
  • 12
  • None of these
A=\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta\end{bmatrix} and AB=BA=I, then B is equal to
  • \begin{bmatrix} -\cos\theta & \sin\theta \\ \sin\theta & \cos\theta\end{bmatrix}
  • \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta\end{bmatrix}
  • \begin{bmatrix} -\sin\theta & \cos\theta \\ \cos\theta & \sin\theta\end{bmatrix}
  • \begin{bmatrix} \sin\theta & -\cos\theta \\ -\cos\theta & \sin\theta\end{bmatrix}
If A=\begin{bmatrix} 3 & x-1 \\ 2x+3 & x+2 \end{bmatrix} is symmetric matrix then the value of x is
  • 4
  • 3
  • -4
  • -3
What is the output order for the following matrix multiplication A_{2 \times 1}\times B_{1\times 2}?
  • 1 \times 1
  • 2 \times 3
  • 2 \times 2
  • 2 \times 1
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers