CBSE Questions for Class 12 Commerce Maths Matrices Quiz 4 - MCQExams.com

If $$\mathrm{A}=\left[\begin{array}{ll}
0 & 1\\
1 & 0
\end{array}\right]$$, then $$\mathrm{A}^{5}=$$
  • $$I$$
  • $$\mathrm{O}$$
  • $$\mathrm{A}$$
  • $$\mathrm{A}^{2}$$
If $$\mathrm{A}=\left[\begin{array}{ll}
1 & 2\\
0 & 3
\end{array}\right]$$ and $$\mathrm{B}=[3 \space-1]$$, then $$\mathrm{B}\mathrm{A}=$$
  • $$\left[\begin{array}{ll}

    3 & 0\\

    0 & 3

    \end{array}\right]$$
  • $$[3 \ \  \   0]$$
  • $$[3 \ \  \   3 ]$$
  • $$[0  \  \  -3]$$
$$ If \space A= \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix}$$, then A is 

  • a nilpotent matrix
  • an involutory matrix
  • a symmetric matrix
  • an idempotent matrix
 If A = $$\begin{bmatrix}
x & 1\\
1 & 0
\end{bmatrix}$$ and $$A^{2}$$ is identity matrix, then $$x= $$
  • $$1$$
  • $$-1$$
  • $$\pm 1$$
  • $$0$$
$$L=\left[\begin{array}{lll}
2 & 3 & 5\\
4 & 1 & 2\\
1 & 2 & 1
\end{array}\right] =P+Q$$, $$P$$  is a symmetric matrix, $${Q}$$ is a skew-symmetric matrix then $${P}$$ is equal to
  • $$\left[\begin{array}{lll}

    3 & 5 & 6\\

    5 & 6 & 4\\

    9 & 4 & 3
    \end{array}\right]$$
  • $$\left[\begin{array}{lll}

    2 & 3.5 & 3\\

    3.5 & 1 & 2\\

    3 & 2 & 1

    \end{array}\right]$$
  • $$\left[\begin{array}{lll}

    6 & 5 & 4\\

    3 & 6 & 3\\

    5 & 2 & 5

    \end{array}\right]$$
  • $$\left[\begin{array}{lll}

    6 & 5 & 4\\

    4 & 5 & 3\\

    3 & 4 & 3

    \end{array}\right]$$
lf $$\mathrm{A}=\left[\begin{array}{ll}
2 & -1\\
3 & -2
\end{array}\right],$$ then $$\mathrm{A}^{5}=$$
  • $$I$$
  • $$A$$
  • $$-A$$
  • $$A^{2}$$
 If  $$I=\begin{bmatrix}
1 & 0\\
0 & 1
\end{bmatrix}$$ and E =$$\begin{bmatrix}
0 & 1\\
0 & 0
\end{bmatrix}$$, then $$\left ( 2I+3E \right )^{3}=$$ 
  • $$8I+ 18E$$
  • $$4I+ 36E$$
  • $$8I +36E$$
  • $$2I+ 3E$$
Let $$A$$ and $$B$$ be $$3\times3$$ matrices such that $$A^{T}=-A, \, B^{T}=B$$, then matrix $$(\lambda AB+3BA)$$ is a skew symmertric matrix for
  • $$\lambda =3$$
  • $$\lambda =-3$$
  • $$\lambda =3$$ or $$\lambda =-3$$
  • $$\lambda =3$$ and $$\lambda =-3$$
If in a square matrix $$A=\left[ { a }_{ ij } \right] $$, we find that $${ a }_{ ij }={ a }_{ ji }\quad \forall \quad i,j$$ , then $$A$$ is
  • Symmetric 
  • Skew Symmetric
  • Idempotent
  • none of these
$$\mathrm{A}$$: If $$\mathrm{A}=\left\{\begin{array}{ll}
1 & -1\\
-1 & 1
\end{array}\right\} $$ and $$\mathrm{B}=\left\{\begin{array}{ll}
2 & 2\\
2 & 2
\end{array}\right\},$$ then $$\mathrm{A}\mathrm{B}=0$$ 
$$\mathrm{R}$$: If $$\mathrm{A}\mathrm{B}=0\Rightarrow  \mathrm{A}$$ or $$\mathrm{B}$$ need not be null matrices.
 The correct answer is 
  • Both $$A$$ and $$R$$ are true, $$R$$ is correct explanation to $$ A$$
  • Both $$A$$ and $$R$$ are true but $$R$$ is not correct explanation to $$A$$
  • $$A$$ is true, $$R$$ is false
  • $$A$$ is false, $$R$$ is true
If P = $$ \begin{bmatrix}
1\\
3\\

4\end{bmatrix}$$ , Q = $$\begin{bmatrix}
2 & -1&5
\end{bmatrix}$$ then PQ = 
  • $$\begin{bmatrix}2 & -1 & 5\\ 6& -3& 15\\ 8& -4 & 20\end{bmatrix}$$
  • $$\begin{bmatrix}2 & -3 & 20\end{bmatrix}$$
  • $$\begin{bmatrix}2\\ -3\\ 20\end{bmatrix}$$
  • $$[19]$$
If $$\mathrm{A}=\left(\begin{array}{lll}
x & 1 & 4\\
-1 & 0 & 7\\
-4 & -7 & 0
\end{array}\right)$$ such that $$\mathrm{A}^{\mathrm{T}}=-\mathrm{A}$$, then $$\mathrm{x}=$$
  • $$-1$$
  • $$0$$
  • $$1$$
  • $$4$$
$$\mathrm{If}\mathrm{A}=\left[\begin{array}{lll}
2 & x-3 & x-2\\
3 & -2 & -1\\
4 & -1 & -5
\end{array}\right]$$ is a symmetric matrix then $$\mathrm{x}$$
  • $$0$$
  • $$3$$
  • $$6$$
  • $$8$$
$$\begin{bmatrix} 10 & 20 & 30 \\ 20 & 45 & 80 \\ 30 & 80 & 171 \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 1 \end{bmatrix}\begin{bmatrix} x & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$ then $${x}=$$
  • $$10$$
  • $$20$$
  • $$30$$
  • $$40$$
$$A=\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$$  then $$A^{2}-A=$$
  • $$\begin{bmatrix} 3 & 0 & 0\\

    0 & 1 & -1\\

    0 & 5 & 4

    \end{bmatrix}$$
  • $$ \begin{bmatrix} 1 & 2 & -1\\

    -3 & 1 & 1\\

    3 & 5 & -4

    \end{bmatrix}$$
  • $$\begin{bmatrix} 3 & 1 & -1\\

    -3 & 1 & -1\\

    3 & 5 & 4

    \end{bmatrix}$$
  • $$\begin{bmatrix} 3 & -1 & 1\\

    3 & -1 & 1\\

    3 & 5 & 4

    \end{bmatrix}$$
$$1\mathrm{f}\mathrm{A}=\left[\begin{array}{lll}
4 & 1 & 0\\
1 & -2 & 2
\end{array}\right],\ \mathrm{B}=\left[\begin{array}{lll}
2 & 0 & -1\\
3 & 1 & 4
\end{array}\right]$$, $$\mathrm{C}=\left[\begin{array}{l}
1\\
2\\
-1
\end{array}\right]$$ and $$(3\mathrm{B}-2\mathrm{A})\mathrm{C}+2\mathrm{X}=0$$ then $$\mathrm{X}$$ is equal to
  • $${\displaystyle \frac{1}{2}} \begin{bmatrix} 3\\ 13 \end{bmatrix}$$
  • $${\displaystyle \frac{1}{2}}\begin{bmatrix} 3\\ -13 \end{bmatrix}$$
  • $${\displaystyle \frac{1}{2}} \begin{bmatrix} -3\\ 13 \end{bmatrix}$$
  • $$\begin{bmatrix} 3\\ -13 \end{bmatrix}$$
$$A=\begin{bmatrix} 1 & -3 & -4 \\ -1 & 3 & 4 \\ 1 & -3 & -4 \end{bmatrix}$$ and $$\mathrm{A}^{2}=\lambda I$$ then $$\lambda=$$
  • $$0$$
  • $$1$$
  • $$\dfrac{1}{2}$$

  • $$-2$$
A : $$\begin{vmatrix}
0 &p-e  & e-r\\
 e-p& 0  &r-p \\
 r-e& p-r & 0
\end{vmatrix}$$ =0
R : The determinant of a skew symmetric matrix is zero 
The correct answer is
  • Both A and R are true R is correct explanation to A
  • Both A and R are true but R is not correct explanation to A
  • A is true R is false
  • A is false R is true
$$A=\left[\begin{array}{lll}
2 & 2 & 1\\
1 & 2 & 1\\
3 & 4 & 2
\end{array}\right]$$ then ($$\mathrm{A}-\mathrm{I}$$) $$(\mathrm{A}-2I)=$$
  • $$\left[\begin{array}{lll}

    5 & 6 & -2\\

    1 & 0 & 7\\

    0 & 1 & 1

    \end{array}\right]$$
  • $$\left[\begin{array}{lll}

    5 & 6 & 3\\

    4 & 6 & 2\\

    7 & 10 & 7

    \end{array}\right]$$
  • $$\left[\begin{array}{lll}

    1 & 0 & 7\\

    7 & 10 & 7\\

    4 & 6 & 2

    \end{array}\right]$$
  • $$\left[\begin{array}{lll}

    -1 & 1 & 2\\

    3 & 4 & 1\\

    1 & 1 & 2

    \end{array}\right]$$
lf  $$A=\begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 2 \\ 1 & 3 & 2 \end{bmatrix}$$ and $$ B=\begin{bmatrix} 10 & -4 & -1 \\ -11 & 5 & 0 \\ 9 & -5 & 1 \end{bmatrix}$$ then 
  • $$\mathrm{A}\mathrm{B}=\mathrm{B}\mathrm{A}$$
  • $$\mathrm{A}\mathrm{B}=-\mathrm{A}\mathrm{B}$$
  • $$\mathrm{A}\mathrm{B}=2\mathrm{B}\mathrm{A}$$
  • $$\mathrm{A}\mathrm{B}=3\mathrm{B}\mathrm{A}$$
$$A=\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$ then $$A^{3}-35A=$$

  • $$\mathrm{A}$$
  • $$2\mathrm{A}$$
  • $$3\mathrm{A}$$
  • $$4\mathrm{A}$$
$$A=\left[\begin{array}{ll}
2 & 1\\
3 & 0
\end{array}\right]$$ then $$\mathrm{A}^{2}+2\mathrm{A}+I=$$
  • $$\left[\begin{array}{ll}

    12 & 4\\

    12 & 4

    \end{array}\right]$$
  • $$\left[\begin{array}{ll}

    12 & -4\\

    4 & 12

    \end{array}\right]$$
  • $$\left[\begin{array}{ll}

    4 & 12\\

    12 & 4

    \end{array}\right]$$
  • $$\left[\begin{array}{ll}

    4 & 12\\

    -12 & -4

    \end{array}\right]$$
Let $$\left[\begin{array}{ll}
2 & -2\\-2 & \ 5
\end{array}\right]=\left[\begin{array}{ll}
1 & 0\\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0\\
0 & x
\end{array}\right]\left[\begin{array}{ll}
1 & -1\\
0 & 1
\end{array}\right]$$, then the value of $$x$$ is
  • $$-3$$
  • $$-2$$
  • $$0$$
  • $$3$$
If $$A=\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$, then additive inverse of A is
  • $$A^{T}$$
  • $$A^{-1}$$
  • $$-A$$
  • $$-A^{-1}$$
If A and B are two matrices such that $$AB = B$$ and $$BA = A$$, then $$A^2 + B^2$$ is equal to
  • $$2AB$$
  • $$2BA$$
  • $$A + B$$
  • $$AB$$
If $$A \times \begin{bmatrix} 1 & 1\\ 0 & 2 \end{bmatrix} = [1 \ \ 2],$$ then A =
  • $$\left[\dfrac {1}{2} \ \ \ 1\right]$$
  • $$\begin{bmatrix} 1 & 2\\ 1 & 0 \end{bmatrix}$$
  • $$\begin{bmatrix} 2 & 1\\ 1 & 5 \end{bmatrix}$$
  • $$\left[1  \ \ \ \dfrac {1}{2}  \right]$$
If $$A$$ is a non-singular matrix, then
  • $$A^{-1}$$ is symmetric if $$A$$ is symmeteric
  • $$A^{-1}$$ is skew-symmetric if $$A$$ is symmeteric
  • $$\left| { A }^{ -1 } \right| =\left| A \right| $$
  • $$\left| { A }^{ -1 } \right| ={ \left| A \right|  }^{ -1 }$$
$$\begin{bmatrix}a\ \
b\end{bmatrix}$$ x $$\begin{bmatrix}x\\y \end{bmatrix} =$$           
  • $$\begin{bmatrix}ax+ay

    +bx+by

    \end{bmatrix}$$
  • $$\begin{bmatrix}ax

    \\ by

    \end{bmatrix}$$
  • $$\begin{bmatrix}ax

    +by

    \end{bmatrix}$$
  • $$\begin{bmatrix}ax\ \

    by

    \end{bmatrix}$$
lf $$ \left[3x^{2}+10xy+5y^{2} \right]=\begin{bmatrix}x & y \end{bmatrix}A\begin{bmatrix} x\\ y\end{bmatrix}$$, and $${A}$$ is a symmetric matrix then $$\mathrm{A}=$$
  • $$\left[\begin{array}{ll}

    3 & 10\\

    10 & 5

    \end{array}\right]$$
  • $$\left[\begin{array}{ll}

    10 & 3\\

    5 & 10

    \end{array}\right]$$
  • $$\left[\begin{array}{ll}

    +3 & -5\\

    -5 & +5

    \end{array}\right]$$
  • $$\left[\begin{array}{ll}

    3 & 5\\

    5 & 5

    \end{array}\right]$$
If $$A = \begin{bmatrix} 1 & -1\\ 2 & -1 \end{bmatrix}; B = \begin{bmatrix} 1 & 1\\ 4 & -1 \end{bmatrix},$$ then $$A^2 + B^2 =$$
  • $$2 I$$
  • $$4 I$$
  • $$\begin{bmatrix} 7 & 0\\ 0 & 7 \end{bmatrix}$$
  • $$\begin{bmatrix} 1 & -1\\ 0 & 5 \end{bmatrix}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers