Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 12 Commerce Maths Matrices Quiz 4 - MCQExams.com

If A=[0110], then A5=
  • I
  • O
  • A
  • A2
If A=[1203] and B=[3 1], then BA=
  • [3003]
  • [3   0]
  • [3   3]
  • [0  3]
If A=[ahghbfgfc], then A is 

  • a nilpotent matrix
  • an involutory matrix
  • a symmetric matrix
  • an idempotent matrix
 If A = [x110] and A2 is identity matrix, then x=
  • 1
  • 1
  • ±1
  • 0
L=[235412121]=P+Q, P  is a symmetric matrix, Q is a skew-symmetric matrix then P is equal to
  • [356564943]
  • [23.533.512321]
  • [654363525]
  • [654453343]
lf A=[2132], then A5=
  • I
  • A
  • A
  • A2
 If  I=[1001] and E =[0100], then (2I+3E)3= 
  • 8I+18E
  • 4I+36E
  • 8I+36E
  • 2I+3E
Let A and B be 3×3 matrices such that AT=A,BT=B, then matrix (λAB+3BA) is a skew symmertric matrix for
  • λ=3
  • λ=3
  • λ=3 or λ=3
  • λ=3 and λ=3
If in a square matrix A=[aij], we find that aij=ajii,j , then A is
  • Symmetric 
  • Skew Symmetric
  • Idempotent
  • none of these
A: If A={1111} and B={2222}, then AB=0 
R: If AB=0A or B need not be null matrices.
 The correct answer is 
  • Both A and R are true, R is correct explanation to A
  • Both A and R are true but R is not correct explanation to A
  • A is true, R is false
  • A is false, R is true
If P = [134] , Q = [215] then PQ = 
  • [21563158420]
  • [2320]
  • [2320]
  • [19]
If A=(x14107470) such that AT=A, then x=
  • 1
  • 0
  • 1
  • 4
IfA=[2x3x2321415] is a symmetric matrix then x
  • 0
  • 3
  • 6
  • 8
[1020302045803080171]=[100210341][x00050001][123014001] then x=
  • 10
  • 20
  • 30
  • 40
A=[121011311]  then A2A=
  • [300011054]
  • [121311354]
  • [311311354]
  • [311311354]
1fA=[410122], B=[201314]C=[121] and (3B2A)C+2X=0 then X is equal to
  • 12[313]
  • 12[313]
  • 12[313]
  • [313]
A=[134134134] and A2=λI then λ=
  • 0
  • 1
  • 12

  • 2
A : |0peerep0rprepr0| =0
R : The determinant of a skew symmetric matrix is zero 
The correct answer is
  • Both A and R are true R is correct explanation to A
  • Both A and R are true but R is not correct explanation to A
  • A is true R is false
  • A is false R is true
A=[221121342] then (AI) (A2I)=
  • [562107011]
  • [5634627107]
  • [1077107462]
  • [112341112]
lf  A=[121342132] and B=[10411150951] then 
  • AB=BA
  • AB=AB
  • AB=2BA
  • AB=3BA
A=[222222222] then A335A=

  • A
  • 2A
  • 3A
  • 4A
A=[2130] then A2+2A+I=
  • [124124]
  • [124412]
  • [412124]
  • [412124]
Let [222 5]=[1011][200x][1101], then the value of x is
  • 3
  • 2
  • 0
  • 3
If A=[1234], then additive inverse of A is
  • AT
  • A1
  • A
  • A1
If A and B are two matrices such that AB=B and BA=A, then A2+B2 is equal to
  • 2AB
  • 2BA
  • A+B
  • AB
If A×[1102]=[1  2], then A =
  • [12   1]
  • [1210]
  • [2115]
  • [1   12]
If A is a non-singular matrix, then
  • A1 is symmetric if A is symmeteric
  • A1 is skew-symmetric if A is symmeteric
  • |A1|=|A|
  • |A1|=|A|1
[a  b] x [xy]=           
  • [ax+ay+bx+by]
  • [axby]
  • [ax+by]
  • [ax  by]
lf [3x2+10xy+5y2]=[xy]A[xy], and A is a symmetric matrix then A=
  • [310105]
  • [103510]
  • [+355+5]
  • [3555]
If A=[1121];B=[1141], then A2+B2=
  • 2I
  • 4I
  • [7007]
  • [1105]
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers