Loading [MathJax]/jax/output/CommonHTML/jax.js
MCQExams
0:0:2
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Matrices Quiz 5 - MCQExams.com
CBSE
Class 12 Commerce Maths
Matrices
Quiz 5
lf
A
=
{
1
1
3
5
2
6
−
2
−
1
−
3
}
,
then
A
3
is a/an
Report Question
0%
diagonal matrix
0%
square matrix
0%
null matrix
0%
unit Matrix
Explanation
A
2
=
{
1
1
3
5
2
6
−
2
−
1
−
3
}
×
{
1
1
3
5
2
6
−
2
−
1
−
3
}
=
{
0
0
0
3
3
9
−
1
−
1
−
3
}
A
3
=
A
2
×
A
A
3
=
{
0
0
0
3
3
9
−
1
−
1
−
3
}
×
{
1
1
3
5
2
6
−
2
−
1
−
3
}
=
{
0
0
0
0
0
0
0
0
0
}
If
[
x
−
3
−
9
y
]
[
4
−
3
9
7
]
=
[
1
0
0
1
]
,
then
x
=
..........
,
y
=
........
Report Question
0%
7
,
4
0%
4
,
7
0%
8
,
9
0%
9
,
8
Explanation
[
x
−
3
−
9
y
]
[
4
−
3
9
7
]
=
[
1
0
0
1
]
⇒
[
4
x
−
27
−
3
x
+
(
−
21
)
−
36
+
9
y
+
27
+
7
y
]
=
[
1
0
0
1
]
Using conditions for equality of matrices we can write
4
x
−
27
=
1
⇒
x
=
7
−
(
i
)
−
(
3
x
+
21
)
=
0
⇒
x
=
−
7
−
(
i
i
)
−
36
+
9
y
=
0
⇒
y
=
4
−
(
i
i
i
)
27
+
7
y
=
1
⇒
y
=
−
4
−
(
i
v
)
Possible answer is
x
=
7
&
y
=
4
State true/false:
If
A
=
[
1
−
1
1
2
−
1
0
1
0
0
]
,
then solve is
A
3
=
I
?
Report Question
0%
True
0%
False
Explanation
Given
A
=
[
1
−
1
1
2
−
1
0
1
0
0
]
Calculating
A
3
A
2
=
[
1
−
1
1
2
−
1
0
1
0
0
]
[
1
−
1
1
2
−
1
0
1
0
0
]
A
2
=
[
(
1
×
1
+
2
×
−
1
+
1
×
1
)
(
1
×
−
1
+
(
−
1
×
−
1
)
+
(
1
×
0
)
)
1
×
1
+
−
1
×
0
+
1
×
0
2
×
1
+
−
1
×
2
+
0
×
1
2
×
−
1
−
1
×
−
1
+
0
×
0
1
×
1
+
1
×
0
+
0
×
0
1
×
1
+
2
×
0
+
0
×
1
−
1
×
1
+
−
1
×
0
+
0
×
0
1
×
1
+
0
×
0
+
0
×
0
]
A
2
=
[
1
−
2
+
1
−
1
+
1
+
0
1
+
0
+
0
2
−
2
+
0
−
2
+
1
+
0
2
+
0
+
0
1
+
0
+
0
−
1
+
0
+
0
1
+
0
+
0
]
=
[
0
0
1
0
−
1
2
1
−
1
1
]
A
3
=
A
2
×
A
=
[
0
0
1
0
−
1
2
1
−
1
1
]
[
1
−
1
1
2
−
1
0
1
0
0
]
A
3
=
[
0
×
1
+
0
×
2
+
1
×
1
0
×
−
1
+
0
×
−
1
+
1
×
0
0
×
1
+
0
×
0
+
1
×
0
0
×
1
+
−
1
×
2
+
2
×
1
0
×
−
1
+
−
1
×
−
1
+
2
×
0
0
×
1
+
(
−
1
×
0
)
+
2
×
0
1
×
1
+
2
×
−
1
+
1
×
1
−
1
×
1
+
(
−
1
×
−
1
)
+
1
×
0
1
×
1
+
(
−
1
×
0
)
+
(
1
×
0
)
]
A
3
=
[
0
+
0
+
1
0
+
0
+
0
0
+
0
+
0
0
−
2
+
2
0
+
1
+
0
0
+
0
+
0
1
−
2
+
1
−
1
+
1
+
0
1
+
0
+
0
]
=
[
1
0
0
0
1
0
0
0
1
]
=
I
⇒
A
3
=
I
Hence, given statement is true.
If
A
=
[
2
3
3
2
]
,
B
=
[
2
1
3
5
]
and
C
=
[
0
1
1
2
]
,
then
(
A
B
)
×
C
=
Report Question
0%
[
8
11
18
23
]
0%
[
11
30
23
60
]
0%
[
17
47
13
38
]
0%
[
0
1
1
2
]
If
A
=
[
2
1
1
3
]
,
B
=
[
3
2
0
1
0
4
]
, then
A
B
=
is
Report Question
0%
[
6
2
5
7
2
3
]
0%
[
2
1
5
0
1
7
]
0%
[
−
5
2
5
1
2
11
]
0%
[
7
4
4
6
2
12
]
Explanation
Given
A
=
[
2
1
1
3
]
and
B
=
[
3
2
0
1
0
4
]
A
B
=
[
2
×
3
+
1
×
1
2
×
2
+
1
×
0
2
×
0
+
1
×
4
1
×
3
+
3
×
1
1
×
2
+
3
×
0
1
×
0
+
3
×
4
]
=
[
6
+
1
4
+
0
0
+
4
3
+
3
2
+
0
0
+
12
]
=
[
7
4
4
6
2
12
]
Therefore the correct option is
(
D
)
If A =
[
2
4
3
5
]
,
B
=
[
x
y
6
5
]
and
A
B
=
[
8
2
6
−
2
]
then
x
=
______, and
y
=
_____.
Report Question
0%
−
9
,
−
8
0%
8
,
9
0%
−
8
,
−
9
0%
9
,
8
Explanation
A
=
[
3
4
3
5
]
;
B
=
[
x
y
6
5
]
and
A
B
=
[
8
2
6
−
2
]
Now,
A
B
=
[
2
4
3
5
]
[
x
y
6
5
]
=
[
2
x
+
24
2
y
+
20
3
x
+
30
3
y
+
25
]
[By the property of multiplication of matrix]
Now, comparing the given value we get,
[
8
2
6
−
2
]
=
[
2
x
+
24
2
y
+
20
3
x
+
30
3
y
+
25
]
Equating each element we get,
2
x
+
24
=
8
⇒
x
=
−
8
2
y
+
20
=
2
⇒
y
=
−
9
∴
option C is correct.
If
P
=
[
1
2
3
4
]
and if
P
Q
=
[
1
0
0
1
]
,then
Q
=
Report Question
0%
[
−
4
2
3
−
1
]
0%
[
4
−
2
3
1
]
0%
[
5
2
3
1
]
0%
[
1
0
0
1
]
If
A
=
[
1
3
0
−
1
2
1
0
0
2
]
,
B
=
[
2
3
4
1
2
3
−
1
1
2
]
then
A
B
=
Report Question
0%
[
5
3
11
1
2
2
1
3
5
]
0%
[
5
9
13
−
1
2
4
−
2
2
4
]
0%
[
5
8
11
1
2
3
2
2
−
3
]
0%
[
5
3
13
−
1
2
4
−
2
3
−
5
]
Explanation
Given,
A
=
[
1
3
0
−
1
2
1
0
0
2
]
and
B
=
[
2
3
4
1
2
3
−
1
1
2
]
Then,
A
B
=
[
1
3
0
−
1
2
1
0
0
2
]
[
2
3
4
1
2
3
−
1
1
2
]
=
[
1
×
2
+
3
×
1
+
0
×
(
−
1
)
1
×
3
+
3
×
2
+
0
×
1
1
×
4
+
3
×
3
+
0
×
2
(
−
1
)
×
2
+
2
×
1
+
1
×
(
−
1
)
(
−
1
)
×
3
+
2
×
2
+
1
×
1
(
−
1
)
×
4
+
2
×
3
+
1
×
2
0
×
2
+
0
×
1
+
2
×
(
−
1
)
0
×
3
+
0
×
2
+
2
×
1
0
×
4
+
0
×
3
+
2
×
2
]
=
[
5
9
13
−
1
2
4
−
2
2
4
]
Hence, the correct option is
(
B
)
If
A
=
[
a
i
j
]
is a square matrix of even order such that
[
a
i
j
]
=
i
2
−
j
2
, then
Report Question
0%
A
is a skew-symmetric matrix and
|
A
|
=
0
0%
A
is symmetric matrix and
|
A
|
is a square
0%
A
is symmetric matrix and
|
A
|
=
0
0%
none of these
Explanation
Given
[
a
i
j
]
=
i
2
−
j
2
⇒
a
i
i
=
0
for all i.
Also, for
i
≠
j
,
a
i
j
=
i
2
−
j
2
=
−
(
j
2
−
i
2
)
=
−
a
j
i
⇒
a
i
j
=
−
a
j
i
Hence, A is skew-symmetric matrix.
For order 2,
A
=
[
0
−
3
3
0
]
|
A
|
=
9
≠
0
Hence, A is a skew-symmetric matrix and |A| is a square
A
=
[
1
2
2
2
1
2
2
2
1
]
,
then
A
3
−
4
A
2
−
6
A
=
Report Question
0%
0
0%
A
0%
−
A
0%
I
Explanation
A
2
=
[
1
2
2
2
1
2
2
2
1
]
[
1
2
2
2
1
2
2
2
1
]
=
[
9
8
8
8
9
8
8
8
9
]
A
3
=
A
2
×
A
=
[
9
8
8
8
9
8
8
8
9
]
[
1
2
2
2
1
2
2
2
1
]
=
[
41
42
42
42
41
42
42
42
41
]
A
3
−
4
A
2
−
6
A
=
[
41
42
42
42
41
42
42
42
41
]
−
[
36
32
32
32
36
32
32
32
36
]
[
6
12
12
12
6
12
12
12
6
]
=
[
−
1
−
2
−
2
−
2
−
1
−
2
−
2
−
2
−
1
]
=
−
A
If
A
=
[
1
t
a
n
x
−
t
a
n
x
1
]
, then
A
T
A
−
1
is
Report Question
0%
[
−
c
o
s
2
x
s
i
n
2
x
−
s
i
n
2
x
c
o
s
2
x
]
0%
[
c
o
s
2
x
−
s
i
n
2
x
s
i
n
2
x
c
o
s
2
x
]
0%
[
c
o
s
2
x
c
o
s
2
x
c
o
s
2
x
s
i
n
2
x
]
0%
none of these
Explanation
A
=
[
1
t
a
n
x
−
t
a
n
x
1
]
⇒
|
A
|
=
sec
2
x
a
d
j
A
=
C
T
=
[
1
tan
x
−
tan
x
1
]
T
⇒
a
d
j
A
=
[
cos
2
x
−
sin
x
cos
x
sin
x
cos
x
cos
2
x
]
A
−
1
=
a
d
j
A
|
A
|
=
[
cos
2
x
−
sin
x
cos
x
sin
x
cos
x
cos
2
x
]
Now,
A
T
A
−
1
=
[
1
−
tan
x
tan
x
1
]
[
cos
2
x
−
sin
x
cos
x
sin
x
cos
x
cos
2
x
]
⇒
A
T
A
−
1
=
[
cos
2
x
−
sin
2
x
sin
2
x
cos
2
x
]
If
[
2
−
1
1
0
−
3
4
]
A
=
[
−
1
−
8
−
10
1
−
2
−
5
9
22
15
]
, then sum of all the elements of matrix
A
is
Report Question
0%
0
0%
1
0%
2
0%
−
3
Explanation
[
2
−
1
1
0
−
3
4
]
A
=
[
−
1
−
8
−
10
1
−
2
−
5
9
22
15
]
let
A
=
[
a
b
c
d
e
f
]
⇒
[
2
−
1
1
0
−
3
4
]
[
a
b
c
d
e
f
]
=
[
−
1
−
8
−
10
1
−
2
−
5
9
22
15
]
⇒
[
2
a
−
d
2
b
−
e
2
c
−
f
a
b
c
−
3
a
+
4
d
−
3
b
+
4
e
−
3
c
+
4
f
]
=
[
−
1
−
8
−
10
1
−
2
−
5
9
22
15
]
⇒
2
a
−
d
=
−
1
,
2
b
−
e
=
−
8
,
2
c
−
f
=
−
10
-----(1)
and
a
=
1
,
b
=
−
2
,
c
=
−
5
----(2)
from (1) and (2)
a
+
b
+
c
=
−
6
and
d
+
e
+
f
=
7
∴
Sum of all the elements in the matrix
a
+
b
+
c
+
d
+
e
+
f
=
1
Hence, option B.
Let
A
=
(
1
2
3
4
)
a
n
d
B
=
(
a
0
0
b
)
,
a
,
b
∈
N
.
Then:
Report Question
0%
there exists exactly one B such that
A
B
=
B
A
0%
there exist exactly infinitely many B's such that
A
B
=
B
A
0%
there cannot exist any B such that
A
B
=
B
A
0%
there exist more than one but finite number of B's such that
A
B
=
B
A
Explanation
Given
A
=
[
1
2
3
4
]
B
=
[
a
0
0
b
]
Finding AB
A
B
=
[
1
2
3
4
]
[
a
0
0
b
]
=
[
a
+
2
×
0
1
×
0
+
2
×
b
3
×
a
+
4
×
0
3
×
0
+
4
×
b
]
A
B
=
[
a
2
b
3
a
4
b
]
Finding BA
B
A
=
[
a
0
0
b
]
[
1
2
3
4
]
=
[
a
+
0
×
3
2
a
+
0
×
4
0
×
1
+
3
b
0
×
2
+
4
b
]
B
A
=
[
a
2
a
3
b
4
b
]
If
A
B
=
B
A
[
a
2
b
3
a
4
b
]
=
[
a
2
a
3
b
4
b
]
Comparing each element we get
a
=
a
,
2
b
=
2
a
⇒
a
=
b
∴
There are infinitely many b's
for which
A
B
=
B
A
Answer=B
If
[
x
1
1
0
]
and
A
2
=
I
, then
x
=
Report Question
0%
0
0%
1
0%
−
1
0%
2
Explanation
Given
A
=
[
x
1
1
0
]
Also,
A
2
=
I
⇒
[
x
1
1
0
]
[
x
1
1
0
]
=
[
1
0
0
1
]
⇒
[
x
2
+
1
x
x
1
]
=
[
1
0
0
1
]
For the above two matrices to be equal each of the first matrix must be equal to the corresponding element of the second matrix.
Therefore,
x
2
+
1
=
1
.
.
.
(
i
)
and
x
=
0...
(
i
i
)
.
From equation
(
i
)
and equation
(
i
i
)
we get,
x
=
0
Hence, the correct option is
(
A
)
If
[
1
2
3
]
B
=
[
3
4
]
,
then order of the matrix
B
is
Report Question
0%
3
×
1
0%
1
×
3
0%
2
×
3
0%
3
×
2
Explanation
Given,
[
1
2
3
]
B
=
[
3
4
]
or
[
1
2
3
]
1
×
3
B
=
[
3
4
]
1
×
2
So, order of
B
should be
3
×
2.
Hence, option 'D' is correct.
The inverse of the matrix
[
2
1
1
3
]
is
Report Question
0%
1
5
[
2
1
1
3
]
0%
1
5
[
3
−
1
−
1
2
]
0%
1
5
[
−
3
1
1
2
]
0%
1
5
[
−
3
−
1
1
2
]
Explanation
Given,
A
=
[
2
1
1
3
]
|
A
|
=
5
Now,
a
d
j
A
=
C
T
=
[
3
−
1
−
1
2
]
T
⇒
a
d
j
A
=
[
3
−
1
−
1
2
]
A
−
1
=
1
5
[
3
−
1
−
1
2
]
If
A
=
[
1
2
x
0
1
0
0
0
1
]
a
n
d
B
[
1
−
2
y
0
1
0
0
0
1
]
and
A
B
=
I
,
then
x
+
y
equals
Report Question
0%
0
0%
−
1
0%
2
0%
none of these
Explanation
A
=
[
1
2
x
0
1
0
0
0
1
]
and
B
=
[
1
−
2
y
0
1
0
0
0
1
]
Also given,
A
B
=
I
[
1
2
x
0
1
0
0
0
1
]
[
1
−
2
y
0
1
0
0
0
1
]
=
[
1
0
0
0
1
0
0
0
1
]
⇒
[
1
0
x
+
y
0
1
0
0
0
1
]
=
[
1
0
0
0
1
0
0
0
1
]
⇒
x
+
y
=
0
Hence, option 'A' is correct.
Let A be a square matrix.
Which of the following is/are not symmetric matrix/matrices?
Report Question
0%
A
+
A
T
0%
A
A
T
0%
A
−
A
T
0%
A
T
A
Explanation
We know a square matrix
A
is called symmetric if
A
T
=
A
. Let
P
=
A
−
A
T
⇒
P
T
=
(
A
−
A
T
)
T
=
A
T
−
A
=
−
P
⇒
This is not a symmetric matrix, it is skew symmetric matrix.
All other matrices in the other option are symmetric.
If
A
=
[
1
2
2
2
1
−
2
a
2
b
]
is a matrix satisfying
A
A
T
=
9
I
3
, then the values of
a
and
b
are
Report Question
0%
a
=
−
2
,
b
=
−
1
0%
a
=
−
2
,
b
=
1
0%
a
=
2
,
b
=
−
1
0%
No values of a,b satisfy given conditions
Explanation
We have,
A
=
[
1
2
2
2
1
−
2
a
2
b
]
⇒
A
T
=
[
1
2
a
2
1
2
2
−
2
b
]
∴
A
A
T
=
9
I
3
⇒
[
1
2
2
2
1
−
2
a
2
b
]
[
1
2
a
2
1
2
2
−
2
b
]
=
9
[
1
0
0
0
1
0
0
0
1
]
or
[
9
0
a
+
2
b
+
4
0
9
2
a
+
2
−
2
b
a
+
2
b
+
4
2
a
+
2
−
2
b
a
2
+
4
+
b
2
]
=
[
9
0
0
0
9
0
0
0
9
]
On comparing above matrices, we get
a
+
2
b
+
4
=
0
,
2
a
+
2
−
2
b
=
0
and
a
2
+
4
+
b
2
=
9
or
a
+
2
b
+
4
=
0
,
a
−
b
+
1
=
0
and
a
2
+
b
2
=
5
Solving
a
+
2
b
+
4
=
0
and
a
−
b
+
1
=
0
, we get
a
=
−
2
,
b
=
−
1
. Clearly, these values satisfy
a
2
+
b
2
=
5
.
∴
a
=
−
2
and
b
=
−
1
.
Using elementary transformation, find the inverse of the matrix
A
=
[
a
b
c
(
1
+
b
c
a
)
]
.
Report Question
0%
⇒
A
−
1
=
[
1
+
b
c
a
b
−
c
a
]
0%
⇒
A
−
1
=
[
1
+
b
c
a
−
b
c
a
]
0%
⇒
A
−
1
=
[
1
+
b
c
a
b
c
a
]
0%
None of these.
Explanation
A
=
[
a
b
c
(
1
+
b
c
a
)
]
We
write,
A
=
I
.
A
⇒
[
a
b
c
(
1
+
b
c
a
)
]
=
[
1
0
0
1
]
A
⇒
[
1
b
a
c
(
1
+
b
c
a
)
]
=
[
1
a
0
0
1
]
A
(
R
1
→
R
1
a
)
or
[
1
b
a
0
1
a
]
=
[
1
a
0
−
c
a
1
]
A
(
R
2
→
R
2
−
c
R
1
)
or
[
1
b
a
0
1
]
=
[
1
a
0
−
c
a
]
A
(
R
2
→
a
R
2
)
or
[
1
0
0
1
]
=
[
1
+
b
c
a
−
b
−
c
a
]
A
(
R
1
→
R
1
−
b
a
R
2
)
⇒
A
−
1
=
[
1
+
b
c
a
−
b
−
c
a
]
If
A
=
[
1
−
2
3
−
4
2
5
]
and
B
=
[
2
3
4
5
2
1
]
, then the product of AB and BA is
Report Question
0%
[
−
10
2
21
−
16
2
37
−
2
−
2
11
]
0%
[
0
−
4
10
3
]
0%
[
−
64
−
8
−
148
26
]
0%
C
a
n
n
o
t
b
e
c
o
m
p
u
t
e
d
Explanation
A
B
=
[
1
−
2
3
−
4
2
5
]
[
2
3
4
5
2
1
]
[
2
−
8
+
6
3
−
10
+
3
−
8
+
8
+
10
−
12
+
10
+
5
]
=
[
0
−
4
10
3
]
B
A
=
[
2
3
4
5
2
1
]
[
1
−
2
3
−
4
2
5
]
[
2
−
12
−
4
+
6
6
+
15
4
−
20
−
8
+
10
12
+
25
2
−
4
−
4
+
2
6
+
5
]
=
[
−
10
2
21
−
16
2
37
−
2
−
2
11
]
Thus, order of AB is
2
×
2
and order of
B
A
is $$3\times3.
$$
So, the product AB and BA can not be computed.
The value of x is such that matrix product
[
2
0
7
0
1
0
1
−
2
1
]
[
−
x
14
x
7
x
0
1
0
x
−
4
x
−
2
x
]
equals an identity matrix. Then the value of 20x is
Report Question
0%
4
0%
5
0%
1
0%
7
Explanation
[
2
0
7
0
1
0
1
−
2
1
]
[
−
x
14
x
7
x
0
1
0
x
−
4
x
−
2
x
]
=
[
5
x
0
0
0
1
0
0
10
x
−
2
5
x
]
=
[
1
0
0
0
1
0
0
0
1
]
(given)
Comparing elements we get,
⇒
5
x
=
1
,
10
x
−
2
=
0
,
∴
x
=
1
5
If A is a skew-symmetric matrix and n is odd positive integer, then
A
n
is
Report Question
0%
a skew-symmetric matrix
0%
a symmetric matrix
0%
a diagonal matrix
0%
none of these
Explanation
Given,
A
is a skew symmetric matrix. Therefore,
A
T
=
−
A
.
n
is an odd positive integer.
Now, to check whether
A
n
is a skew symmetric matrix or not.
(
A
n
)
T
=
(
A
.
A
n
−
1
)
T
=
(
A
n
−
1
)
T
.
A
T
=
(
A
.
A
n
−
2
)
T
.
(
−
A
)
=
(
A
n
−
2
)
T
.
A
T
.
(
−
A
)
=
(
A
.
A
n
−
3
)
T
(
−
A
)
(
−
A
)
=
(
A
n
−
3
)
T
.
A
T
.
(
−
A
)
2
and so on....
=
(
−
A
)
n
=
(
−
1
)
n
A
n
=
−
A
n
Therefore,
A
n
is also a skew symmetric matrix if
A
is a skew symmetric matrix
If
A
=
[
1
0
1
2
1
]
,
then
A
50
is
Report Question
0%
[
1
0
0
50
]
0%
[
1
0
50
1
]
0%
[
1
25
0
1
]
0%
None of these
Explanation
A
=
[
1
0
1
2
1
]
A
2
=
[
1
0
1
2
1
]
[
1
0
1
2
1
]
=
[
1
0
2
(
1
2
)
1
]
=
[
1
0
1
1
]
A
4
=
[
1
0
1
1
]
[
1
0
1
1
]
=
[
1
0
2
1
]
A
8
=
[
1
0
2
1
]
[
1
0
2
1
]
=
[
1
0
4
1
]
Similarly
A
n
=
[
1
0
n
2
1
]
for even
n
⇒
A
50
=
[
1
0
25
1
]
State true or false:
If
A
=
[
2
−
1
0
1
]
and
B
=
[
1
0
−
1
−
1
]
,
then
(
A
+
B
)
2
=
A
2
+
A
B
+
B
A
+
B
2
=
A
2
+
2
A
B
+
B
2
Report Question
0%
True
0%
False
Explanation
Given
A
=
[
2
−
1
0
1
]
and
B
=
[
1
0
−
1
−
1
]
(
A
+
B
)
2
=
A
2
+
A
B
+
B
A
+
B
2
=
A
2
+
2
A
B
+
B
2
is true only when
A
B
=
B
A
A
B
=
[
2
−
1
0
1
]
[
1
0
−
1
−
1
]
=
[
3
1
−
1
−
1
]
B
A
=
[
1
0
−
1
−
1
]
[
2
−
1
0
1
]
=
[
2
−
1
−
2
0
]
A
B
≠
B
A
∴
Given statement is false.
If
[
2
−
3
1
λ
]
×
[
1
5
μ
0
2
−
3
]
=
[
2
4
1
1
−
1
13
]
then
Report Question
0%
λ
=
3
,
μ
=
4
0%
λ
=
4
,
μ
=
3
0%
λ
=
2
,
μ
=
5
0%
none of these
Explanation
Since,
[
2
−
3
1
λ
]
×
[
1
5
μ
0
2
−
3
]
=
[
2
4
1
1
−
1
13
]
⇒
[
2
−
0
10
−
6
2
μ
+
9
1
+
0
5
+
2
λ
μ
−
3
λ
]
=
[
2
4
1
1
−
1
13
]
⇒
[
2
4
2
μ
+
9
1
5
+
2
λ
μ
−
3
λ
]
=
[
2
4
1
1
−
1
13
]
⇒
2
μ
+
9
=
1
and
5
+
2
λ
=
−
1
⇒
μ
=
−
4
,
λ
=
−
3
But these value does not satisfy
μ
−
3
λ
=
13
If the matrix
A
=
[
a
b
c
d
]
then
A
2
is
Report Question
0%
[
a
2
b
2
c
2
d
2
]
0%
[
a
2
+
b
c
a
b
+
b
d
a
c
+
d
c
b
c
+
d
2
]
0%
nonexistent
0%
none of these
Explanation
Given
A
=
[
a
b
c
d
]
A
2
=
[
a
b
c
d
]
[
a
b
c
d
]
=
[
a
2
+
b
c
a
b
+
b
d
a
c
+
d
c
b
c
+
d
2
]
State true or false.
If
A
,
B
,
C
are three matrices such that
A
=
[
x
y
z
]
,
B
=
[
a
h
g
h
b
f
g
f
c
]
and
C
=
[
x
y
z
]
,
then
A
B
C
=
[
a
x
2
+
b
y
2
+
c
z
2
+
2
h
x
y
+
2
g
z
x
+
2
f
y
z
]
Report Question
0%
True
0%
False
Explanation
Given,
A
,
B
,
C
are three matrices such that
A
=
[
x
y
z
]
,
B
=
[
a
h
g
h
b
f
g
f
c
]
and
C
=
[
x
y
z
]
Consider,
A
B
=
[
x
y
z
]
[
a
h
g
h
b
f
g
f
c
]
⇒
=
[
a
x
+
y
h
+
z
g
x
h
+
y
b
+
z
c
x
g
+
y
f
+
z
c
]
Now,
A
B
C
=
[
a
x
+
y
h
+
z
g
x
h
+
y
b
+
z
c
x
g
+
y
f
+
z
c
]
[
x
y
z
]
⇒
=
[
a
x
2
+
x
y
h
+
z
g
x
+
x
h
y
+
y
2
h
+
z
c
y
+
x
g
z
+
y
f
z
+
z
2
c
]
Hence it's true
If
A
=
[
1
1
−
1
2
−
3
4
3
−
2
3
]
,
B
=
[
−
1
−
2
−
1
6
12
6
5
10
5
]
and
C
=
[
−
1
−
1
1
2
2
−
2
−
3
−
3
3
]
,
which if the following are null matrices ?
Report Question
0%
C
A
0%
A
B
0%
B
A
0%
A
C
Explanation
Given
A
=
[
1
1
−
1
2
−
3
4
3
−
2
3
]
,
B
=
[
−
1
−
2
−
1
6
12
6
5
10
5
]
and
C
=
[
−
1
−
1
1
2
2
−
2
−
3
−
3
3
]
C
A
=
[
−
1
−
1
1
2
2
−
2
−
3
−
3
3
]
[
1
1
−
1
2
−
3
4
3
−
2
3
]
=
[
0
0
0
0
0
0
0
0
0
]
=
O
A
B
=
[
1
1
−
1
2
−
3
4
3
−
2
3
]
[
−
1
−
2
−
1
6
12
6
5
10
5
]
=
[
0
0
0
0
0
0
0
0
0
]
=
O
B
A
=
[
−
1
−
2
−
1
6
12
6
5
10
5
]
[
1
1
−
1
2
−
3
4
3
−
2
3
]
=
[
−
8
7
−
10
48
−
42
60
40
−
35
50
]
≠
O
A
C
=
[
1
1
−
1
2
−
3
4
3
−
2
3
]
[
−
1
−
1
1
2
2
−
2
−
3
−
3
3
]
=
[
4
4
−
4
−
20
−
20
20
−
16
−
16
16
]
≠
O
Hence, options A and B.
If
A
=
[
0
2
3
3
5
7
]
,
B
=
[
1
3
7
2
4
1
]
and
A
+
B
=
[
1
5
10
5
k
8
]
,
then find the value of
k
.
Report Question
0%
9
0%
4
0%
5
0%
1
Explanation
Given
A
=
[
0
2
3
3
5
7
]
and
B
=
[
1
3
7
2
4
1
]
∴
A
+
B
=
sum of respective elements of A and B
=
[
1
5
10
5
9
8
]
Hence the value of
k
is
9
0:0:2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page