Loading [MathJax]/jax/output/CommonHTML/jax.js
MCQExams
0:0:2
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Matrices Quiz 9 - MCQExams.com
CBSE
Class 12 Commerce Maths
Matrices
Quiz 9
If
A
=
[
1
4
4
4
1
4
4
4
1
]
, then
A
2
−
6
A
=
_____.
Report Question
0%
27
I
3
0%
5
I
3
0%
20
I
3
0%
30
I
3
Explanation
Given,
A
=
[
1
4
4
4
1
4
4
4
1
]
Therefore,
A
2
=
[
1
4
4
4
1
4
4
4
1
]
[
1
4
4
4
1
4
4
4
1
]
=
[
1
+
16
+
16
4
+
4
+
16
4
+
16
+
4
4
+
4
+
16
16
+
1
+
16
16
+
4
+
4
4
+
16
+
4
16
+
4
+
4
16
+
16
+
1
]
=
[
33
24
24
24
33
24
24
24
33
]
and
6
A
=
[
1
4
4
4
1
4
4
4
1
]
=
[
6
24
24
24
6
24
24
24
6
]
Thus
A
2
−
6
A
=
[
33
24
24
24
33
24
24
24
33
]
−
[
6
24
24
24
6
24
24
24
6
]
=
[
33
−
6
24
−
24
24
−
24
24
−
24
33
−
6
24
−
24
24
−
24
24
−
24
33
−
6
]
=
[
27
0
0
0
27
0
0
0
27
]
=
27
I
3
If
A
=
(
−
2
2
2
−
2
)
, then which one of the following is correct?
Report Question
0%
A
2
=
−
2
A
0%
A
2
=
−
4
A
0%
A
2
=
−
3
A
0%
A
2
=
4
A
Explanation
Given
A
=
[
−
2
2
2
−
2
]
A
2
=
[
−
2
2
2
−
2
]
[
−
2
2
2
−
2
]
=
[
(
−
2
)
(
−
2
)
+
2
⋅
2
(
−
2
)
(
2
)
+
(
2
)
(
−
2
)
(
2
)
(
−
2
)
+
(
−
2
)
(
2
)
(
2
)
(
2
)
+
(
−
2
)
(
−
2
)
]
=
[
8
−
8
−
8
8
]
=
−
4
[
−
2
2
2
−
2
]
=
−
4
A
If
A
=
[
0
0
0
5
]
, then
A
12
is
Report Question
0%
[
0
0
0
60
]
0%
[
0
0
0
5
12
]
0%
[
0
0
0
0
]
0%
[
1
0
0
1
]
Explanation
We have
A
=
[
0
0
0
5
]
A
2
=
A
×
A
=
[
0
0
0
5
]
×
[
0
0
0
5
]
=
[
0
0
0
5
2
]
Similarly,
A
3
=
A
2
×
A
=
[
0
0
0
5
2
]
×
[
0
0
0
5
]
=
[
0
0
0
5
3
]
Thus we can conclude
A
12
=
[
0
0
0
5
12
]
If
A
=
[
3
3
3
3
3
3
3
3
3
]
, then
A
3
=
___________.
Report Question
0%
243
A
0%
81
A
0%
27
A
0%
729
A
Explanation
[
1
1
1
1
1
1
1
1
1
]
×
[
1
1
1
1
1
1
1
1
1
]
=
[
3
3
3
3
3
3
3
3
3
]
=
A
⟹
A
=
[
1
1
1
1
1
1
1
1
1
]
×
[
1
1
1
1
1
1
1
1
1
]
=
[
3
3
3
3
3
3
3
3
3
]
=
3
[
1
1
1
1
1
1
1
1
1
]
A
2
=
[
3
3
3
3
3
3
3
3
3
]
×
[
3
3
3
3
3
3
3
3
3
]
=
3
[
1
1
1
1
1
1
1
1
1
]
×
3
[
1
1
1
1
1
1
1
1
1
]
=
9
[
1
1
1
1
1
1
1
1
1
]
×
[
1
1
1
1
1
1
1
1
1
]
=
27
[
1
1
1
1
1
1
1
1
1
]
A
3
=
A
2
.
A
=
27
[
1
1
1
1
1
1
1
1
1
]
×
3
[
1
1
1
1
1
1
1
1
1
]
=
81
[
1
1
1
1
1
1
1
1
1
]
×
[
1
1
1
1
1
1
1
1
1
]
=
81
A
The answer is option (B).
If
A
=
[
x
y
z
]
,
B
=
[
a
h
g
h
b
f
g
f
c
]
,
C
=
[
α
β
γ
]
T
then
A
B
C
is
Report Question
0%
Not defined
0%
a
1
×
1
matrix
0%
a
3
×
3
matrix
0%
a
3
×
2
matrix
Explanation
A
=
[
x
y
z
]
B
=
[
a
h
g
h
b
f
g
f
c
]
,
C
=
[
α
β
γ
]
1
×
3
3
×
3
3
×
1
So
A
B
C
is a
1
×
1
matrix
Is it possible to define the matrix
A
+
B
when both
A
and
B
are square matrices of the same order?
Report Question
0%
True
0%
False
Explanation
It is always possible to define the sum of two matrix
X
and
Y
if they are of same order.
So, If A and B are square matrices of same order, A + B is always definable.
Let A =
[
0
0
−
1
0
−
1
0
−
1
0
0
]
.
Then the only correct statement
A
is
Report Question
0%
A
=
0
0%
A
=
(
−
1
)
I
0%
A
−
1
does not exist
0%
A
2
=
I
Explanation
A
=
[
0
0
−
1
0
−
1
0
−
1
0
0
]
∴
A
2
=
[
0
0
−
1
0
−
1
0
−
1
0
0
]
[
0
0
−
1
0
−
1
0
−
1
0
0
]
A
2
=
[
0
+
0
+
1
0
0
0
0
+
1
+
0
0
0
0
0
+
0
+
1
]
=
[
1
0
0
0
1
0
0
0
1
]
∴
A
2
=
I
Hence it is a identity matrix
If A =
[
α
0
1
1
]
, B =
[
1
0
5
1
]
whenever
A
2
=
B
then values of
α
is
Report Question
0%
1
0%
−
1
0%
4
0%
no real value of
α
Explanation
A
2
= B
⇒
[
α
0
1
1
]
[
α
0
1
1
]
=
[
1
0
5
1
]
⇒
[
α
2
0
α
+
1
1
]
=
[
1
0
5
1
]
⇒
α
2
= 1,
α
+ 1 = 5
∴
α
=
±
1
,
α
=
4
There is no real value of
α
which satisfies both.
Using elementary row transformation find the inverse of the matrix A =
[
3
−
1
−
2
2
0
−
1
3
−
5
0
]
Report Question
0%
[
−
5
8
5
4
1
8
−
3
8
3
4
−
1
8
−
5
4
3
2
1
4
]
0%
1
8
[
5
−
5
1
3
−
3
1
0
3
1
]
0%
1
8
[
5
5
1
3
6
−
1
10
−
12
2
]
0%
None of these
Obtain the inverse of the following matrix using elementary operation:
A
=
[
3
0
−
1
2
3
0
0
4
1
]
Report Question
0%
[
−
3
−
4
−
3
2
3
−
2
8
−
12
9
]
0%
[
3
4
3
2
3
−
2
8
−
12
9
]
0%
[
−
3
−
4
3
2
3
−
2
−
8
−
12
9
]
0%
[
3
−
2
8
−
4
3
−
12
3
−
2
9
]
Explanation
GIven
A
=
[
3
0
−
1
2
3
0
0
4
1
]
Therefore,
A
−
1
=
1
|
A
|
a
d
j
(
A
)
⟹
A
−
1
=
1
3
(
3
−
0
)
−
1
(
8
−
0
)
[
3
−
2
8
−
4
3
−
12
3
−
2
9
]
⟹
A
−
1
=
[
3
−
2
8
−
4
3
−
12
3
−
2
9
]
If
I
=
(
1
0
0
0
1
0
0
0
1
)
,
P
=
(
1
0
0
0
−
1
0
0
0
−
2
)
,
then the matrix
P
3
+
2
P
2
is equal to
Report Question
0%
P
0%
1
−
P
0%
2
I
+
P
0%
2
I
−
P
Explanation
Given the matrix
P
=
(
1
0
0
0
−
1
0
0
0
−
2
)
.
Now,
P
2
=
(
1
2
0
0
0
(
−
1
)
2
0
0
0
(
−
2
)
2
)
[ Since
P
is a diagonal matrix]
⇒
P
2
=
(
1
0
0
0
1
0
0
0
4
)
......(1).
Again,
P
3
=
(
1
3
0
0
0
(
−
1
)
3
0
0
0
(
−
2
)
3
)
⇒
P
3
=
(
1
0
0
0
−
1
0
0
0
−
8
)
.....(2).
So,
P
3
+
2
P
2
=
(
1
+
2
0
0
0
−
1
+
2
0
0
0
−
8
+
8
)
=
(
3
0
0
0
1
0
0
0
0
)
=
2
I
+
P
.
Given
A
=
[
3
6
−
2
−
8
]
and
B
=
[
2
16
]
, find the matrix
X
such that
X
A
=
B
.
Report Question
0%
[
−
4
3
−
3
]
0%
[
4
3
3
]
0%
[
4
3
−
3
]
0%
[
−
4
3
3
]
Explanation
X
A
=
B
X
1
×
2
[
3
6
−
2
−
8
]
2
×
2
=
[
2
16
]
1
×
2
X
should be of order
1
×
2
Let
X
be
[
a
b
]
∴
[
a
b
]
[
3
6
−
2
−
8
]
=
[
2
16
]
⇒
[
3
a
−
2
b
6
a
−
8
b
]
=
[
2
16
]
∴
3
a
−
2
b
=
2
⟶
(
1
)
×
2
6
a
−
8
b
=
16
⟶
(
2
)
×
1
∴
6
a
−
4
b
=
4
6
a
−
8
b
=
16
_
_
_
_
_
_
_
_
_
_
_
4
b
=
−
12
⇒
b
=
−
3
∴
3
a
+
6
=
2
a
=
−
4
3
∴
X
=
[
−
4
3
−
3
]
The matrix equation satisfied by
A
is ______
,
if
A
=
[
1
2
2
2
1
2
2
2
1
]
.
Report Question
0%
A
2
−
4
A
−
5
I
=
0
0%
A
2
−
4
A
−
5
=
0
0%
A
2
+
4
A
−
5
I
=
0
0%
A
2
+
4
A
−
5
=
0
Explanation
Consider the given matrix,
A
=
[
1
2
2
2
1
2
2
2
1
]
Consider,
A
2
−
4
A
−
5
I
=
[
1
2
2
2
1
2
2
2
1
]
[
1
2
2
2
1
2
2
2
1
]
−
4
[
1
2
2
2
1
2
2
2
1
]
−
5
[
1
0
0
0
1
0
0
0
1
]
=
[
9
8
8
8
9
8
8
8
9
]
−
[
4
8
8
8
4
8
8
8
4
]
−
[
5
0
0
0
5
0
0
0
5
]
=
[
0
0
0
0
0
0
0
0
0
]
=
0
State true/false:
If
A
=
[
−
1
2
3
]
and
B
=
[
−
2
−
1
−
4
]
,
then
(
A
B
)
t
≠
B
t
A
t
.
Report Question
0%
True
0%
False
Explanation
Given,
A
=
[
−
1
2
3
]
3
×
1
a
n
d
B
=
[
−
2
−
1
−
4
]
Now,
A
B
=
[
−
1
2
3
]
×
[
−
2
−
1
−
4
]
=
[
2
1
4
−
4
−
2
−
8
−
6
−
3
−
12
]
∴
(
A
B
)
t
=
[
2
−
4
−
6
1
−
2
−
3
4
−
8
−
12
]
C
o
n
s
i
d
e
r
,
B
t
×
A
t
=
[
−
2
−
1
−
4
]
×
[
−
1
2
3
]
=
[
2
−
4
−
6
1
−
2
−
3
4
−
8
−
12
]
∴
(
A
B
)
t
=
B
t
×
A
t
Hence, given statement is false.
If
A
=
[
3
−
3
4
2
−
3
4
0
−
1
1
]
and
B
=
[
3
1
2
2
0
5
1
2
0
]
, find
A
B
.
Report Question
0%
[
5
6
−
9
4
3
−
9
−
1
3
−
2
]
0%
[
2
4
7
1
5
3
−
1
0
−
5
]
0%
[
7
11
−
9
4
10
−
11
−
1
2
−
5
]
0%
[
7
8
−
19
4
1
−
5
−
1
12
−
5
]
Explanation
A
=
[
3
−
3
4
2
−
3
4
0
−
1
1
]
B
=
[
3
1
2
2
0
5
1
2
0
]
A
B
=
[
3
−
3
4
2
−
3
4
0
−
1
1
]
×
[
3
1
2
2
0
5
1
2
0
]
=
[
9
−
6
+
4
3
+
0
+
8
6
−
15
+
0
6
−
6
+
4
2
+
0
+
8
4
−
15
+
0
0
−
2
+
1
0
+
0
+
2
0
−
5
+
0
]
=
[
7
11
−
9
4
10
−
11
−
1
2
−
5
]
[
1
0
2
−
1
1
−
2
0
2
1
]
+
[
5
1
−
2
1
1
0
−
2
−
2
1
]
What will be the sum of the diagonal elements of the resultant matrix?
Report Question
0%
10
0%
6
0%
9
0%
7
Explanation
[
1
0
2
−
1
1
−
2
0
2
1
]
+
[
5
1
−
2
1
1
0
−
2
−
2
1
]
=
[
6
1
0
0
2
−
2
−
2
0
2
]
Sum of diagonal
=
6
+
2
+
2
=
10
If
A
=
[
1
0
1
2
1
]
, then
A
100
is equal to
Report Question
0%
[
1
0
(
1
2
)
×
100
1
]
0%
[
1
0
25
1
]
0%
[
1
0
50
1
]
0%
[
1
0
100
1
]
Explanation
Given
A
=
[
1
0
1
2
1
]
A
2
=
[
1
0
1
2
1
]
×
[
1
0
1
2
1
]
=
[
1
0
2
2
1
]
A
3
=
[
1
0
2
2
1
]
×
[
1
0
1
2
1
]
=
[
1
0
3
2
1
]
A
4
=
[
1
0
3
2
1
]
×
[
1
0
1
2
1
]
=
[
1
0
4
2
1
]
A
n
=
[
1
0
n
2
1
]
So
A
100
=
[
1
0
100
2
1
]
=
[
1
0
50
1
]
If
A
=
[
1
3
2
4
]
and
B
=
[
4
7
5
6
]
,
then
A
B
=
Report Question
0%
[
19
25
28
38
]
0%
[
25
8
26
14
]
0%
[
34
8
58
23
]
0%
[
5
10
7
10
]
Explanation
Given,
A
=
[
1
3
2
4
]
and
B
=
[
4
7
5
6
]
A
B
=
[
1
3
2
4
]
[
4
7
5
6
]
=
[
1
(
4
)
+
3
(
5
)
1
(
7
)
+
3
(
6
)
2
(
4
)
+
4
(
5
)
2
(
7
)
+
4
(
6
)
]
=
[
19
25
28
38
]
B
=
A
+
A
2
+
A
3
+
A
4
If order of
A
is
3
then order of
B
is
Report Question
0%
3
0%
6
0%
2
0%
9
Explanation
The order of matrix does not change when the operation are done on it.
So, the order of
B
remains same as the order of
A
.
If
A
=
[
2
5
−
3
−
1
3
1
4
1
2
]
then
A
2
is
Report Question
0%
[
−
13
22
−
7
15
25
−
7
−
1
5
8
]
0%
[
−
13
22
−
7
−
1
5
8
15
25
−
7
]
0%
[
−
13
22
−
7
15
25
7
1
5
8
]
0%
[
13
22
7
15
25
−
7
−
1
5
8
]
Explanation
A
2
=
A
.
A
=
[
2
5
−
3
−
1
3
1
4
1
2
]
.
[
2
5
−
3
−
1
3
1
4
1
2
]
=
[
−
13
22
2
×
−
3
+
5
×
1
+
(
−
3
)
×
2
−
1
5
8
15
25
−
7
]
[
−
13
22
−
7
−
1
5
8
−
15
25
−
7
]
Hence, B will be correct answer.
If the graph of
y
=
f
(
x
)
is symmetrical about the lines
x
=
1
and
x
=
2
, then which of the following is true?
Report Question
0%
f
(
x
+
1
)
=
f
(
x
)
0%
f
(
x
+
3
)
=
f
(
x
)
0%
f
(
x
+
2
)
=
f
(
x
)
0%
None of these
Explanation
f
(
x
)
is symmetrical about the line
x
=
1
So,
f
(
1
−
x
)
=
f
(
1
+
x
)
.................... (1)
f
(
x
)
is symmetrical about the line
x
=
2
So,
f
(
2
−
x
)
=
f
(
2
+
x
)
.................... (2)
Replace
x
with
1
−
x
in equation (1) ,
f
(
1
−
1
+
x
)
=
f
(
1
+
1
−
x
)
f
(
x
)
=
f
(
2
−
x
)
..........................(3)
From (2) and (3) ,
f
(
x
)
=
f
(
2
+
x
)
Find the inverse of the following matrix.
[
0
1
2
1
2
3
3
1
1
]
Report Question
0%
[
1
2
−
1
2
1
2
4
3
1
−
5
2
−
3
2
1
2
]
0%
[
1
2
−
1
2
1
2
−
4
−
3
−
1
−
5
2
−
3
2
1
2
]
0%
[
1
2
−
1
2
1
2
−
4
3
−
1
−
5
2
−
3
2
1
2
]
0%
[
0
1
2
1
−
2
3
3
1
−
1
]
State true or false:
The product matrix of
[
1
0
0
1
]
and
[
0
1
1
0
]
is an identity matrix.
Report Question
0%
True
0%
False
Explanation
Consider,
[
1
0
0
1
]
×
[
0
1
1
0
]
=
[
1
(
0
)
+
0
(
1
)
1
(
1
)
+
0
(
0
)
0
(
0
)
+
1
(
1
)
0
(
1
)
+
1
(
0
)
]
=
[
0
1
1
0
]
,
which is not an identify matrix of order
2
×
2
.
Hence given statement is false.
If
A
and
B
are two non-singular matrices and both are symmetric and commute each other, then
Report Question
0%
Both
A
−
1
B
and
A
−
1
B
−
1
are symmetric
0%
A
−
1
B
is symmetric but
A
−
1
B
−
1
is not symmetric
0%
A
−
1
B
−
1
is symmetric but
A
−
1
B
is not symmetric
0%
Neither
A
−
1
B
nor
A
−
1
B
−
1
are symmetric
Explanation
|
A
|
≠
0
&
|
B
|
≠
0
(
A
−
1
B
−
1
)
T
=
(
B
−
1
)
T
(
A
−
1
)
T
(
A
−
1
B
−
1
)
T
=
(
B
T
)
−
1
(
A
T
)
−
1
[
A
T
=
A
B
T
=
B
]
(
A
−
1
B
−
1
)
T
=
B
−
1
A
−
1
(
A
−
1
B
−
1
)
T
=
(
A
B
)
−
1
[
A
B
=
B
A
]
(
A
−
1
B
−
1
)
T
=
(
B
A
)
−
1
(
A
−
1
B
−
1
)
T
=
A
−
1
B
−
1
A
−
1
B
−
1
i
s
a
s
y
m
m
e
t
r
i
c
m
a
t
r
i
x
similarly
A
−
1
B
is also symmetric matrix.
If
A
=
[
0
2
3
−
4
]
and
k
A
=
[
0
3
a
2
b
24
]
, then the value of
k
,
a
,
b
, are respectively.
Report Question
0%
−
6
,
−
12
,
−
18
0%
−
6
,
4
,
9
0%
−
6
,
−
4
,
−
9
0%
−
6
,
12
,
18
Explanation
If
A
=
[
0
2
3
−
4
]
then,
k
A
=
[
0
2
k
3
k
−
4
k
]
But it is given that
k
A
=
[
0
3
a
2
b
24
]
So,
[
0
2
k
3
k
−
4
k
]
=
[
0
3
a
2
b
24
]
⇒
−
4
k
=
24
k
=
−
6
3
a
=
2
k
3
a
=
−
12
a
=
−
4
2
b
=
3
k
2
b
=
−
18
b
=
−
9
If
A
=
[
2
0
0
0
2
0
0
0
2
]
then
A
6
= _____________.
Report Question
0%
6
A
0%
12
A
0%
16
A
0%
32
A
Explanation
A
=
[
2
0
0
0
2
0
0
0
2
]
A
2
=
[
2
0
0
0
2
0
0
0
2
]
[
2
0
0
0
2
0
0
0
2
]
=
[
4
0
0
0
4
0
0
0
4
]
A
4
=
A
2
A
2
=
[
4
0
0
0
4
0
0
0
4
]
[
4
0
0
0
4
0
0
0
4
]
=
[
16
0
0
0
16
0
0
0
16
]
A
6
=
A
4
A
2
=
[
16
0
0
0
16
0
0
0
16
]
[
4
0
0
0
4
0
0
0
4
]
=
[
64
0
0
0
64
0
0
0
64
]
t
a
k
i
n
g
32
o
u
t
w
e
g
e
t
A
6
=
32
[
2
0
0
0
2
0
0
0
2
]
=
32
A
If
[
x
4
−
1
]
[
2
1
0
1
0
2
0
2
4
]
[
x
4
−
1
]
=
0
then
x
is equal to
Report Question
0%
−
1
+
√
6
0%
8
±
√
5
0%
−
2
±
√
10
0%
3
±
√
6
Explanation
[
x
4
1
]
1
×
3
[
2
1
0
1
0
2
0
2
4
]
3
×
3
[
x
4
−
1
]
3
×
1
=
0
[
x
4
1
]
1
×
3
[
2
x
+
4
+
0
x
+
0
−
2
0
+
8
−
4
]
3
×
1
=
0
⇒
2
x
2
+
4
x
+
4
x
−
8
−
4
=
0
⇒
2
x
2
+
8
x
−
12
=
0
⇒
x
2
+
4
x
−
6
=
0
⇒
x
2
+
2
×
2
x
+
4
−
4
−
6
=
0
⇒
(
x
+
2
)
2
=
10
⇒
x
+
2
=
±
√
10
∴
x
=
−
2
±
√
10
If
A
=
[
0
c
−
b
−
c
0
a
b
−
a
0
]
,
B
=
[
a
2
a
b
a
c
b
a
b
2
b
c
c
a
c
b
c
2
]
then
A
B
=
Report Question
0%
O
0%
I
0%
2
I
0%
None of these
Explanation
A
B
=
[
0
c
−
b
−
c
b
a
b
−
a
0
]
[
a
2
a
b
a
c
b
a
b
2
b
c
c
a
c
b
c
2
]
=
[
a
b
c
−
a
b
c
b
2
c
1
−
b
2
c
b
c
2
−
b
c
2
−
a
2
c
+
a
2
c
−
a
b
c
+
a
b
c
−
a
c
2
+
a
c
2
a
2
b
−
a
2
b
a
b
2
−
a
b
2
a
b
c
−
a
b
c
]
=
[
0
0
0
0
0
0
0
0
0
]
=
0
⇒
(
A
)
The value of
x
, so that
⌈
1
x
1
⌉
[
1
3
2
0
5
1
0
3
2
]
[
1
1
x
]
=
0
is
Report Question
0%
−
7
±
√
35
2
0%
−
9
±
√
53
2
0%
±
2
0%
−
7
10
Explanation
Consider,
[
1
x
1
]
[
1
3
2
0
5
1
0
3
2
]
=
1
[
1
3
+
5
x
+
3
5
]
[
1
6
+
5
x
5
]
[
1
1
x
]
=
7
+
10
x
By given, we have
7
+
10
x
=
0
⇒
x
=
−
7
10
.
If A be square matrix of order n and k is a scalar, then adj (KA) is:
Report Question
0%
K
n
(
a
d
j
A
)
0%
K (adj A)
0%
K
n
−
1
(
a
d
j
A
)
0%
K
n
+
1
(
a
d
j
A
)
0:0:2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page