Processing math: 2%

CBSE Questions for Class 12 Commerce Maths Application Of Derivatives Quiz 10 - MCQExams.com

The equation of the curves through the point (1,0) and whose slope is y1x2+x is
  • (y1)(x+1)+2x=0
  • 2x(y1)+x+1=0
  • x(y1)(x+1)+2=0
  • None of these
The function f(x) is 
  • increasing for all x
  • non-monotonic
  • decreasing for all x
  • None of these
If f(x) = \displaystyle \int_{1}^{x} e^{t^2/2}(1-t^2)dt, then \dfrac{d}{dx} f(x) at x=1 is 
  • 0
  • 1
  • 2
  • -1
The curve for which the ratio of the length of the segment by any tangent on the Y-axis to the length of the radius vector is constant (K), is
  • (y+\sqrt {x^2 -y^2})x^{k-1}=c
  • (y+\sqrt {x^2 +y^2})x^{k-1}=c
  • (y-\sqrt {x^2 -y^2})x^{k-1}=c
  • (y+\sqrt {x^2 +y^2})x^{k-1}=c
Number of critical point for y=f(x) for x \in [0,2]
  • 0
  • 1
  • 2
  • 3
The point of the curve y^2 = x where the tangent makes an angle of \frac { \pi}{4} with x-axis is 
  • ( \frac {1}{2}, \frac {1}{4} )
  • ( \frac {1}{4}, \frac {1}{2} )
  • (4,2 )
  • (1,1)
The abscissa of the point on the curve 3y=6x- 5x^3 the normal at which passes through origin is :
  • 1
  • \frac {1}{3}
  • 2
  • \frac {1}{2}
The curve y=x^{\frac{1}{5}} has at (0,0)
  • a vertical tangent (parallel to y-axis)
  • a horizontal tangent (parallel to x-axis)
  • an oblique tangent
  • no tangent
The equation of the curve satisfying the differential equation y_2(x^2 + 1) = 2xy_1 passing through the point (0, 1) and having slope of tangent at x = 0 as 3 (where y_2 and y_1 represents 2nd and 1st order derivative), then
  • y=f(x) is a strictly increasing function
  • y=f(x) is non-monotomic finction
  • y=f(x) has three distinct real roots
  • y=f(x) has only one negative root
The tangent to the curve y=e^{2x} at the point (0,1) meets x-axis at:
  • (0,1)
  • \left( -\frac { 1 }{ 2 } ,0 \right)
  • (2,0)
  • (0,2)
The slope of tangent to the curve x=t^2+3t-8,y=2t^2-2t-5 at the point (2,-1) is:
  • \frac{22}{7}
  • \frac{6}{7}
  • \frac{-6}{7}
  • -6
The curve for which the slope of the tangent at any point is equal to the ratio of the abscissa to the ordinate of the point is :
  • an ellipse
  • parabola
  • circle
  • rectangular hyperbola
The line 5x-2y+4k=0 is tangent to 4x^{2}-y^{2}=36, then k is:
  • \dfrac{9}{4}
  • \dfrac{81}{16}
  • \dfrac{4}{9}
  • \dfrac{2}{3}
The function  f\left( x \right) =tan x-x
  • always increases
  • always decreases
  • never increases
  • sometime increase and sometimes decreases
Which of the following function is decreasing on \left( 0,\frac { \pi  }{ 2 }  \right)
  • sin 2 x
  • tan x
  • cos x
  • cos 3 x
If the tangent at (1,1) on y^{2}=x(2-x)^{2} meets the curve again at P, then P is
  • (4,4)
  • (-1,2)
  • (3,6)
  • \left(\dfrac{9}{4}, \dfrac{3}{8}\right)
The slope of the tangent to the curve x = t^{2} + 3 t - 8, y = 2t^{2} - 2t - 5 at the point (2, -1) is
  • \dfrac{22}{7}
  • \dfrac{6}{7}
  • \dfrac{7}{6}
  • \dfrac{-6}{7}
The line y = mx + 1 is a tangent to the curve y^{2} = 4x if the value of m is .......
  • 1
  • 2
  • 3
  • \dfrac{1}{2}
The normal at the point (1, 1) on the curve 2y + x^{2} - 3 is .............
  • x + y = 0
  • x - y = 0
  • x + y = 1
  • x - y = 1
The slope of the normal to the curve  y = 2x ^{2} + 3 \sin x at x = 0 is 
  • 3
  • 1/3
  • -3
  • -1 /3
The normal to the curve x^{2} = 4y passing (1, 2) is
  • x + y = 3
  • x - y = 3
  • x + y = 1
  • x - y = 1
The line y = x + 1 is a tangent to the curve y^{2} = 4 x at the point 
  • ( 1 , 2 )
  • ( 2 , 1 )
  • ( 1 , -2 )
  • ( -1 , 2 )
The points on the curve 9 y^{2} = x^{3}, where the normal to the curve makes equal intercepts with the axes are ...........
  • \left ( 4, \pm \dfrac{8}{3} \right )
  • \left ( 4, \dfrac{-8}{3} \right )
  • \left ( 4, + \dfrac{8}{3} \right )
  • \left (\pm 4, \dfrac{8}{3} \right )
For a\in[\pi,2\pi] and n\in I, the critical points of \displaystyle f(x)=\frac{1}{3}\sin a\tan^{3}x+(\sin a - 1 ) \tan x +\sqrt{\frac{a-2}{8-a}} is
  • x=n\pi
  • x=2n\pi
  • x=(2n+1)\pi
  • no critical points
Let \mathrm{f}(\mathrm{x})=\mathrm{a}\mathrm{x}^{3}+\mathrm{b}\mathrm{x}^{2}+ cx + \mathrm{d}, where a,b,c,d  are real and 3\mathrm{b}^{2}<\mathrm{c}^{2}, is an increasing function and \mathrm{g}(\mathrm{x})=\mathrm{a}\mathrm{f}'(\mathrm{x})+\mathrm{b}\mathrm{f}''(\mathrm{x})+\mathrm{c}^{2}. lf \displaystyle \mathrm{G}(\mathrm{x})=\int_{\alpha}^{\mathrm{x}}\mathrm{g}(\mathrm{t})\mathrm{d}\mathrm{t},\alpha \in \mathrm{R}, then for \alpha < x < \alpha +1 ,
  • G(x) is a decreasing function
  • G(x) is an increasing function
  • G(x) is neither increasing nor decreasing
  • G(x) is a one-one function
Let f'\left( \sin { x }  \right) <0 and \displaystyle f''\left( \sin { x }  \right) >0,\quad \forall \quad x\in \left( 0,\frac { \pi  }{ 2 }  \right) and g\left( x \right)=f\left( \sin { x }  \right) +f\left( \cos { x }  \right) , then g(x) is decreasing in
  • \displaystyle \left( \frac { \pi  }{ 4 } ,\frac { \pi  }{ 2 }  \right)
  • \displaystyle \left( 0,\frac { \pi  }{ 4 }  \right)
  • \displaystyle \left( 0,\frac { \pi  }{ 2 }  \right)
  • \displaystyle \left( \frac { \pi  }{ 6 } ,\frac { \pi  }{ 2 }  \right)
The point of contact of vertical tangent to the curve given by the equations \mathrm{x}=3-2\cos\theta, \mathrm{y}=2+3\sin\theta is
  • (1, 5)
  • (1, 2)
  • (5, 2)
  • (2, 5)
The value of a for which the function \displaystyle \mathrm{f}(\mathrm{x})=(4\mathrm{a}-3)(\mathrm{x}+\log 5)+2(\mathrm{a}-7)\cot\frac{\mathrm{x}}{2}\sin^{2}\frac{\mathrm{x}}{2} does not possess critical points is
  • (-\displaystyle \infty,-\frac{4}{3})\mathrm{\cup}(2,\infty)
  • (-\infty, -1)
  • [1, \infty)
  • (-2,\infty)
The greatest inclination between the tangents is
  • \displaystyle \tan^{-1} \left ( \dfrac{\mathrm{a}+\mathrm{b}}{2\sqrt{\mathrm{a}\mathrm{b}}}\right )
  • \displaystyle \tan^{-1} \left (\dfrac{\mathrm{a}-\mathrm{b}}{2\sqrt{\mathrm{a}\mathrm{b}}}\right )
  • \tan^{-1}\sqrt{\dfrac{\mathrm{a}}{\mathrm{b}}}
  • \tan^{-1}\sqrt{\dfrac{\mathrm{b}}{\mathrm{a}}}
A function y=f(x) has a second order derivative f''(x)=6(x-1) .
If its graph passes through the point (2,1) and at that point the tangent to the graph is y=3x-5, then the function is
  • (x-1)^{2}
  • (x+1)^{2}
  • (x+1)^{3}
  • (x-1)^{3}
If f(x) = \displaystyle \frac{x}{{\sin x}} and g(x) = \displaystyle \frac{x}{{\tan x}}  where 0 < x \leq 1 then in the interval
  • Both f(x) and g(x) are increasing functions
  • Both f(x) and g(x) are decreasing functions
  • f(x) is an increasing function
  • g(x) is an increasing function
A function y = f (x) is given by x = \cos^2\theta & y =\dfrac{\cot\,  \theta }{\sec^2\, \theta } for all \theta >0, then f is :
  • increasing in x \in \left (0, \dfrac {3}{2}\right) & decreasing in x \in \left ( \dfrac {3}{2}, \infty\right)
  • increasing in x \in (0, 1)
  • increasing in x \in (0, 2)
  • decreasing in x \in ( 2, \infty)
Suppose a,b,c are such that the curve y = ax^2 + bx + c is tangent to y = 3x -3 at (1, 0) and is also tangent to y = x + 1 at (3, 4) then the value of (2a -b -4c) equals
  • 7
  • 8
  • 9
  • 10
For the curve y=3  \sin \theta  \cos  \theta,  x= e^{\theta} \sin \theta,  0  \leq \theta  \leq  \pi, the tangent is parallel to x-axis when \theta is :
  • \displaystyle \frac{\pi}{4}
  • \displaystyle \frac{\pi}{2}
  • \displaystyle \frac{3\pi}{4}
  • \displaystyle \frac{\pi}{6}
If f(x) = x^{2/3} then
  • (0,0) is a point of maxima
  • (0,0) is a point of minima
  • (0,0) is a critical point
  • There is no critical point
If f(x)=\left\{\begin{matrix}x^2+2 & x<0\\ 3 & x = 0\\ x+2 & x>0\end{matrix}\right., then which of the following statement(s) is/are false ?
  • f(x) has a local maximum at x=0
  • f(x) is strictly decreasing on the left of x=0
  • f'(x) is strictly increasing on the left of x=0
  • f'(x) is strictly increasing on the right of x=0
For the curve represented parametrically by the equations, x = 2 ln \cot( t) + 1 & y = \tan( t) + \cot( t)
  • tangent at t = \pi/4 is parallel to x - axis
  • normal at t = \pi/4 is parallel to y - axis
  • tangent at t = \pi/4 is parallel to the line y = x
  • tangent and normal intersect at the point (2, 1)
A curve passes through (2, 0) and the slope of the tangent at any point (x, y) is x^2 -2x for all values of x. The point of minimum ordinate on the curve where x > 0 is (a, b)'
Then find the value of a + 6b.
  • 2
  • 4
  • -2
  • -4
The value of x at which tangent to the curve y=x^3-6x^2+9x+4,   0\leq x \leq 5 has maximum slope is
  • 0
  • 2
  • \dfrac{5}{2}
  • 5
The point on the curve y^{2} = x , the tangent at which makes an angle of 45^{0} with positive direction of x - axis will be given by
  • \left (\displaystyle \frac{1}{2},\displaystyle \frac{1}{4} \right )
  • \left ( \displaystyle \frac{1}{2}, \displaystyle \frac{1}{2} \right )
  • (2,4)
  • \left ( \displaystyle \frac{1}{4}, \displaystyle \frac{1}{2} \right )
A function y=f(x) has a second-order derivative f''(x)=6(x-1). If its graph passes through the point (2,1) and at the point tangent to the graph is y=3x-5, then the value of f(0) is 
  • 1
  • -1
  • 2
  • 0
The period of oscillation T of a pendulum of length l at a place of acceleration due to gravity g is given by T=2\pi \sqrt {\dfrac {l}{g}}. If the calculated length is 0.992 times the actual length and if the value assumed for g is 1.002 times its actual value, the relative error in the computed value of T is
  • 0.005
  • -0.005
  • 0.003
  • -0.003
The focal length of a mirror is given by \dfrac {1}{v}-\dfrac {1}{u}=\dfrac {2}{f}. If equal errors (\alpha) are made in measuring u and v, then the relative error in f is
  • \dfrac {2}{\alpha}
  • \alpha \left (\dfrac {1}{u}+\dfrac {1}{v}\right )
  • \alpha \left (\dfrac {1}{u}-\dfrac {1}{v}\right )
  • none of these
The tangent of the acute angle between the curves y=|x^2-1| and y=\sqrt {7-x^2} at their points of intersection is
  • \displaystyle \frac {5\sqrt 3}{2}
  • \displaystyle \frac {3\sqrt 5}{2}
  • \displaystyle \frac {5\sqrt 3}{4}
  • \displaystyle \frac {3\sqrt 5}{4}
The angle made by the tangent of the curve x=a (t+\sin t \cos t), y=a(1+sint)^2 with the x- axis at any point on it is
  • \displaystyle \frac {1}{4}(\pi +2t)
  • \displaystyle \frac {1-\sin t}{\cos t}
  • \displaystyle \frac {1}{4}(2t-\pi)
  • \displaystyle \frac {1+\sin t}{\cos 2t}
Consider the function f(x)= \begin{cases} x \sin \displaystyle \frac {\pi}{x}, for  \ x>0\\ 0,                   for \   x=0 \end{cases}. Then, the number of points in (0,1) where the derivative f'(x) vanishes is
  • 0
  • 1
  • 2
  • infinite
The abscissas of points P and Q on the curve y=e^x+e^{-x} such that tangents at P and Q make 60^{\circ} with the x-axis are
  • \ln \left (\displaystyle \frac {\sqrt 3+\sqrt 7} {7}\right ) and \ln \left (\displaystyle \frac {\sqrt 3+\sqrt 5} {2}\right )
  • \ln \left (\displaystyle \frac {\sqrt 3+\sqrt 7} {2}\right )
  • \ln \left (\displaystyle \frac {\sqrt 7-\sqrt 3} {7}\right )
  • \pm\ln \left (\displaystyle \frac {\sqrt 3+\sqrt 7} {2}\right )
The graphs y=2x^3-4x+2 and y=x^3+2x-1 intersect at exactly 3 distinct points. The slope of the line passing through two of these points
  • is equal to 4
  • is equal to 6
  • is equal to 8
  • is not unique
If the curve represented parametrically by the equations x=2 \ln\cot t+1 and y=\tan t+ \cot t
  • tangent and normal intersect at the point (2,1)
  • normal at t=\displaystyle \frac{\pi}{4} is parallel to the y axis
  • tangent at t=\displaystyle \frac{\pi}{4} is parallel to the line y=x
  • tangent at t=\displaystyle \frac{\pi}{4} is parallel to the x axis
Let S be a square with sides of length x. If we approximate the change in size of the area of S by \displaystyle h.\frac{dA}{dx}|_{x=x_0}, when the sides are changed from x_0 to x_o+h, then the absolute value of the error in our approximation, is
  • h^2
  • 2hx_0
  • x_0^2
  • h
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers