Processing math: 8%

CBSE Questions for Class 12 Commerce Maths Application Of Derivatives Quiz 12 - MCQExams.com

Given P(x)=x4+ax3+bx2+cx+d such that x=0 is the only real root of P(x)=0. If P(1)<P(1), then in the interval [1,1].
  • P(1) is the minimum and P(1) is the maximum of P
  • P(1) is not minimum but P(1) is the maximum of P
  • P(1) is the minimum and P(1) is not the maximum of P
  • Neither P(1) is the minimum not P(1) is the maximum of P
Find the slope of tangent of the curvex=asin3t,y=bcos3t at t=π2
  • cott
  • tant
  • cott
  • not defined  at π2
The interval in which y=x2ex is increasing is
  • (,)
  • (2,0)
  • (2,)
  • (0,2)
The set of all values of a for which f\left( x \right) =\left( { a }^{ 2 }-3a+2 \right) \left( \cos ^{ 2 }{ \dfrac { x }{ 4 } -\sin ^{ 2 }{ \dfrac { x }{ 4 }  }  }  \right) +\left( a-1 \right) x+\sin { 1 } does not possess critical points is
  • (1, \infty)
  • (-2, 4)
  • (1, 3)\cup (3, 5)
  • (-\infty, 1)\cup (1, 4)
Let f(x) = \underset{x}{\overset{x + \dfrac{\pi}{3}}{\int}} |\sin \, \theta | \, d \theta \, \, (x \in [0, \pi])
  • f(x) is strictly increasing in this interval
  • f(x) is differentiable in this interval
  • Range of f(x) is [2 - \sqrt{3} , 1]
  • f(x) has a maxima at x = \dfrac{\pi}{3}
The slope of the tangent to the curve {r^2} = {a^2}\cos 2\theta, where x = r\cos \theta ,y = r\sin \theta , at the point \theta=\frac{\pi}{6} is
  • \frac{1}{2}
  • -1
  • 1
  • 0
The line \dfrac{x}{a}+\dfrac{y}{b}=1 touches the curve y=be^{-x/a} at the point.
  • (a, b/a)
  • (-a, b/a)
  • (0, b)
  • None of these
if m is the slope of a tangent to the curve e^{y}=1+x^{2}, then  m belongs to the interval
  • [-1, 1]
  • [-2, -1]
  • [1, 2]
  • [1, 3]
IF f(x)=\dfrac{x^2}{2-2cos x} ; \ g(x)=\dfrac{x^2}{6x-6sin x} where 0< \times  < 1, then 
  • both 'f' and 'g' are increasing functions
  • 'f' is decreasing & 'g' is increasing function
  • 'f' increasing functions & 'g' is decreasing function
  • both 'f' & 'g' are decreasing function
A tangent drawn to the curve y = f\left( x \right) at P\left( {x,y} \right)
cuts the x and y axes at A and B, respectively, such that AP:PB = 1:3. If f\left( 1 \right) = 1 then the curve passes through \left( {k,\frac{1}{8}} \right) where k is
  • 1
  • 2
  • 3
  • 4
On the curve {x}^{3} = 12y , then the interval at which the abscissa changes at a faster rate than the ordinate ?
  • x\in \left( -2,2 \right)
  • x\in \left( -2,2 \right) -\left\{ 0 \right\}
  • x\in \left( -3,3 \right) -\left\{ 0 \right\}
  • None of these
The point on the curve y = b e^{\dfrac {-x}{a}} at which the tangent drawn is \dfrac {x}{a} + \dfrac {y}{b} = 1 is
  • (0, b)
  • \left (a, \dfrac {1}{e}\right )
  • (0, 1)
  • (1, 0)
Let f ( x ) = \frac { 1 } { 1 + x ^ { 2 } }. Let m be the slope, 'a' be the x-intercept and 'b' be the y-intercept of tangent to y = f ( x ).Abscissa of point of contact of the tangent for which 'm' is greatest is:
  • \frac { 1 } { \sqrt { 3 } }
  • 1
  • 0
  • \frac { - 1 } { \sqrt { 3 } }
If V is the set of points on the curve y^{3} - 3xy +2 = 0 where the tangent is vertical then V =.
  • \phi
  • \left \{(1 , 0)\right \}
  • \left \{(1, 1)\right \}
  • \left \{(0, 0), (1, 1)\right \}
Paraboals (y-\alpha )^{2}=4a(x-\beta )and (y-\alpha )^{2}=4a'(x-\beta ') will have a common normal (other than the normal passing through vertex ofparabola)if:
  • \frac{2(a-a')}{\beta '-\beta }< 1
  • \frac{2(a-a')}{\beta -\beta' }< 1
  • \frac{2(a'-a)}{\beta -\beta' }< 1
  • \frac{2(a'a)}{\beta -\beta' }> 1
The curve y-{e}^{xy}+x=0 has a vertical tangent at the point
  • (1,1)
  • At no point
  • (0,1)
  • (1,0)
The slope of the curve y=\sin { x } +\cos ^{ 2 }{ x } is zero at a point , whose x-coordinate can be ?
  • \dfrac { \pi }{ 4 }
  • \dfrac { \pi }{ 2 }
  • { \pi }
  • \dfrac { \pi }{ 3 }
If the curves \dfrac {x^{2}}{a^{2}} + \dfrac {y^{2}}{4} = 1 and y^{3} = 16x intersect at right angles, then a^{2} is equal to
  • 5/3
  • 4/3
  • 6/11
  • 3/2
If the slope of one of the lines given by {a^2}{x^2} + 2hxy+by^2 = 0 be three times of the other , then h is equal to 
  • 2\sqrt 3 ab
  • -2\sqrt 3 ab
  • \frac{2}{{\sqrt 3 }}ab
  • -\frac{2}{{\sqrt 3 }}ab
If for a curve represented parametrically by x={ sec }^{ 2 }t,\quad y=cot\quad t\quad , the tangent  at a point P(t=\frac { \pi  }{ 4 } ) meets the curve again at the point Q, then \begin{vmatrix} PQ \end{vmatrix}is equal to 
  • \frac { 2\sqrt { 5 } }{ 3 }
  • \frac { 3\sqrt { 5 } }{ 2 }
  • \frac { 5\sqrt { 3 } }{ 3 }
  • \frac { 5\sqrt { 5 } }{ 4 }
\dfrac { d } { d x } \left( \sin ^ { 5 } x \cdot \sin 5 x \right) =
  • \sin ^ { 4 } x \cdot \sin 5 x
  • 5\sin ^ { 4 } x \cdot \sin 6 x
  • 5\sin ^ { 4 } x \cdot \sin 5 x
  • - 5 \sin ^ { 4 } x \cdot \sin 6 x
Let f and g be non-increasing and non-decreasing functions respectively from [0,\infty ] vto [0,\infty ] and h(x)=f(g(x)),h(0)=0, then in [0,\infty ], h(x)-h(1) is 
  • <0
  • >0
  • =0
  • none of these
Let f and g be differentiable function satisfying g'(a)=2,g(a)=b and fog=I (identity function). Then f'(b) is equal to 
  • \frac{1}{2}
  • 2
  • \frac{2}{3}
  • None of these
The function f\left( x \right) = \frac{{\left| {x - 1} \right|}}{{{x^2}}} is
  •  One-One in \left( { - \infty ,1 }\right)
  •  One-One in \left( {0,\infty} \right)
  •  One-One in \left( {0,1} \right)
  •  One-One in \left( { - \infty ,0 }\right)
y = 6\tan \,x\left( {{e^x} - x - 1} \right) - 3{x^3} - {x^4} - \frac{5}{4}{x^5},\, if {n^{th}} derivative at x=0 is non zero then least value of n is
  • 3
  • 4
  • 5
  • 6
If (x+{ y }^{ 3 })\dfrac { dy }{ dx } =y and y(0)=then sum of all possible value(s) of y(1) is ________________.
  • -4
  • 4
  • 0
  • 2
The function f(x)=x-ln|2x+1|,x\epsilon \left(-100,\dfrac{-1}{2}\right)\cup \left(\dfrac{-1}{2},\dfrac{1}{2}\right) is decreasing in interval
  • \left(\dfrac{-1}{2},\dfrac{1}{2}\right)
  • \left(-100,\dfrac{-1}{2}\right)
  • \left(\dfrac{-1}{2},0\right) only
  • \left(0,\dfrac{1}{2}\right) only
For what values of a , f(x) = -x^3 +4ax^2 +2x-5 is decreasing \forall x
  • (1, 2)
  • (3, 4)
  • R
  • no value of a
Equation of the tangent line at y=\dfrac{a}{4} to the curve y\left( { x }^{ 2 }+{ a }^{ 2 } \right) ={ ax }^{ 2 }.
  • 8y=3\sqrt { 3 }x -a
  • 8y=3\sqrt { 3 }x -5a
  • 8y=3\sqrt { 3 }x +a
  • None
Which of the following is not always correct for the function f(x) and g(x) these are inverse to each other.
  • If f(x) is an increasing function, then g(x) will also be increasing.
  • If f(x) is an odd function, then g(x) will also be an odd function.
  • Tangent at (\alpha,\ \beta ) to f(x) is parallel to tangent at (\beta,\ \alpha) to g(x)
  • Tangent at (\alpha,\ \beta ) to f(x) and tangent at is parallel to (\beta,\ \alpha) to g(x) forms complementary angles with x-axis
The increasing function in (0,\ \pi /4) is
  • \cos x+\sin x
  • \cos x-\sin x
  • \dfrac {\sin x}{x}
  • \dfrac {x}{\sin x}
Let f :\left[ 2,4 \right] \rightarrow \left[ 3,5 \right] be a bijective decreasing function, then find \int _{ 2 }^{ 4 }{ f(t)dt- } \int _{ 3 }^{ 5 }{ { f }^{ -1 }(t)dt. }
  • 2
  • 14
  • 0
  • 10/3
The increasing function in \left(0,\pi/4\right) is 
  • \cos x+\sin x
  • \cos x-\sin x
  • \dfrac{\sin x}{x}
  • \dfrac{x}{\sin x}
If f(x)=\cos x+a^{2}x+b is an increasing function for all values of x, then the value which 'a' can take. 
  • a\in [-1,1]
  • a\in(-\infty,-1]\cup [1,\infty)
  • a\in [-1,\infty)
  • a\in(-\infty,1]
Which of the following statements is/are correct ?
  • x + sinx is increasing function
  • tanx is an increasing function
  • x + sinx is decreasing function
  • sec x is an increasing function
If y = \log _ { \sin x } ( \tan x ) , then \frac { d y } { d x } at x = \frac { \pi } { 4 } is:

  • \frac { 4 } { \log 2 }
  • -\frac { 4 } { \log 2 }
  • \frac { 1 } { \log 2 }
  • none of these
f(x) is differentiable function satisfying the relation f(x)=x^{2}+\displaystyle \int^{x}_{0}e^{-t}f(x-t)dt, then \displaystyle \sum^{9}_{k=1}f(k) equals
  • 1060
  • 1260
  • 960
  • 1224
f(x)=\frac{x}{log x}-\frac{log}{x} is increasing in 
  • (e,\infty )
  • (0,1)\epsilon (1,e)
  • (0,1)
  • (1,e)
Solve it:-
y = x + \dfrac{1}{x},
  • x=1 is a point of local maximum
  • x=-1 is a point of local minimum
  • Local maximum value > Local minimum value
  • Local maximum value < Local minimum value
In the interval \left( {7,\infty } \right),f(x) = \left| {x - 5} \right| + 2\left| {x - 7} \right| is 
  • Increasing
  • Decreasing
  • Constant
  • Cannot be estimated
If f(x)=\dfrac {x}{\sin x} and g(x)=\dfrac {x}{\tan x} where 0 < x < 1, then in this interval 
  • g(x) are decreasing functions
  • both f(x) and g(x) are decreasing functions
  • f(x) is an increasing function
  • g(x) is an increasing function
If \theta is angle of intersection between y=10-x^{2} and y=4+x^{2} then |\tan \theta| is-
  • \dfrac {5\sqrt {3}}{11}
  • \dfrac {7\sqrt {3}}{15}
  • \dfrac {4\sqrt {3}}{11}
  • none
The function f(x)=\sqrt{25-4x^{2}} is increasing in
  • (-3,0)
  • (4,0)
  • (-5/20)
  • R
The function log (log x) increases in 
  • (1,\infty )
  • (0,\infty )
  • \infty
  • R
The function f defined by f(x)=(x+2)e^{-x} si
  • decreasing for all x
  • decreasing in (-\infty ,-1) and increasing in (1,\infty )
  • increasing for all x
  • decreasing in (-1,-\infty ) and increasing in (-\infty ,-1)
The function \frac{ln(1+x)}{x} in (0,\infty ) is
  • increasing
  • decreasing
  • not decreasing
  • not increasing
Let f(x)=\left\{\begin{matrix} max \{|x|, x^2\}, & |x|\leq 2\\ 8-2|x|, & 2 < |x|\leq 4\end{matrix}\right.
Let S be the set of points in the interval (-4, 4) at which f is not differentiable. Then S?
  • Is an empty set
  • Equals \{-2, -1, 1, 2\}
  • Equals \{-2, -1, 0, 1, 2\}
  • Equals \{-2, 2\}
If the subnormal to the curve { x }^{ 2 }.{ y }^{ n }={ a }^{ 2 } is a constant then n=
  • -4
  • -3
  • -2
  • -1
Let f(x) be a function satisfying f'(x)=f(x) with f(0)=1 and g be the function satisfying f(x)+g(x)=x^2 the value of the integral \displaystyle\int^1_0f(x)g(x)dx is?
  • \dfrac{1}{4}(e-7)
  • \dfrac{1}{4}(e-2)
  • \dfrac{1}{2}(e-3)
  • None of these
Define f(x) = \dfrac{1}{2} [ |\sin x| + \sin x], 0 < x \le 2\pi. The f is
  • increasing in \left(\dfrac{\pi}{2}, \dfrac{3\pi}{2}\right)
  • decreasing in \left(0, \dfrac{\pi}{2}\right) and increasing in \left(\dfrac{\pi}{2}, \pi\right)
  • increasing in \left(0, \dfrac{\pi}{2}\right) and decreasing in \left(\dfrac{\pi}{2}, \pi\right)
  • increasing in \left(0, \dfrac{\pi}{4}\right) and decreasing in \left(\dfrac{\pi}{4}, \pi\right)
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers