Processing math: 13%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Application Of Derivatives Quiz 4 - MCQExams.com
CBSE
Class 12 Commerce Maths
Application Of Derivatives
Quiz 4
Let the parabolas
y
=
x
2
+
a
x
+
b
and
y
=
x
(
c
−
x
)
touch each other at the point
(
1
,
0
)
. Then
Report Question
0%
a
=
−
3
0%
b
=
1
0%
c
=
2
0%
b
+
c
=
3
Explanation
As point
(
1
,
0
)
lies on
y
=
x
2
+
a
x
+
b
⇒
a
+
b
=
−
1
...(1)
And also lies on
y
=
x
(
c
−
x
)
⇒
c
=
1
...(2)
They touch each other, so slope of tangents drawn from
(
1
,
0
)
will be same, then
d
y
d
x
=
2
x
+
a
=
c
−
2
x
⇒
a
=
c
−
4
⇒
a
=
−
3
...(3)
Using (1) and (3) we get
−
3
+
b
=
1
⇒
b
=
2
...(4)
Now using (2) and (4) we get
b
+
c
=
2
+
1
=
3
Hence, options 'A' and 'D' are correct.
The curve
x
n
a
n
+
y
n
b
n
=
2
touches the line
x
a
+
y
b
=
2
at the point
Report Question
0%
(
b
,
a
)
0%
(
a
,
b
)
0%
(
1
,
1
)
0%
(
1
a
,
1
b
)
Explanation
Slope of curve
x
n
a
n
+
y
n
b
n
=
2
is
d
y
d
x
=
−
b
n
a
n
x
n
−
1
y
n
−
1
Slope of tangent
x
a
+
y
b
=
2
is
d
y
d
x
=
−
b
a
Equating both slopes, we get
−
b
n
a
n
x
n
−
1
y
n
−
1
=
−
b
a
Only
x
=
a
y
=
b
satisfy the above equation.
Hence, option 'B' is correct.
If the line joining the points
(
0
,
3
)
and
(
5
,
−
2
)
is the tangent to the curve
y
=
c
x
+
1
then the value of
c
is
Report Question
0%
1
0%
−
2
0%
4
0%
none of these
Explanation
Slop of line joining the points
(
0
,
3
)
a
n
d
(
5
,
2
)
is given by
3
+
2
0
−
5
=
−
1
This is equal to the slop of tangent on the curve and that is given by
d
y
d
x
=
−
c
(
x
+
1
)
2
d
y
d
x
=
−
1
⇒
c
=
(
x
+
1
)
2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
(
1
)
\
Equation of line joining the points
(
0
,
3
)
a
n
d
(
5
,
2
)
is given by
(
y
−
3
)
=
−
1
(
x
−
0
)
Solving equation of tangent and the curve for point of intersection
c
x
+
1
+
x
=
3
.............(2)
Solving (1) and (2)
x
=
1
Putting this in (2), we get c=4
A point on the ellipse
4
x
2
+
9
y
2
=
36
where the tangent is equally inclided to the axes is
Report Question
0%
(
9
√
13
,
4
√
13
)
0%
(
−
9
√
13
,
4
√
13
)
0%
(
9
√
13
,
−
4
√
13
)
0%
(
4
√
13
,
−
9
√
13
)
Explanation
Slope of tangent to the curve
4
x
2
+
9
y
2
=
36
is
1
. since it is equally inclined to the axes.
d
y
d
x
=
4
x
9
y
=
1
⇒
x
=
9
y
4
On solving obtained equation with the equation of curve, we get
y
=
±
4
√
13
Substituting value of y we get
(
x
,
y
)
=
(
9
√
13
,
4
√
13
)
,
(
−
9
√
13
,
4
√
13
)
,
(
9
√
13
,
−
4
√
13
)
Hence, options 'A', 'B' and 'C' are correct.
If error in measuring the edge of a cube is
k
% then the percentage error in estimating its volume is
Report Question
0%
k
0%
3
k
0%
k
3
0%
none of these
Explanation
Let the actual length of the cube be a.
Therefore the measured length of the cube will be
=
a
(
1
±
0.0
k
)
=
a
(
1
±
k
100
)
Considering positive error,
a
′
=
a
(
1
+
k
100
)
V
′
=
a
3
(
1
+
k
100
)
3
=
a
3
(
1
+
3
(
k
100
)
+
3
(
k
100
)
2
+
(
k
100
)
3
)
Since
k
100
<<
1
, hence we neglect the higher order terms.
Thus
V
′
=
a
3
(
1
+
3
(
k
100
)
)
Actual volume V
V
=
a
3
Therefore
V
′
−
V
=
a
3
(
1
+
3
k
100
)
−
a
3
=
a
3
(
3
k
100
)
V
′
−
V
V
=
a
3
3
k
100
a
3
=
3
k
100
=
3
k
100
V
′
−
V
V
×
100
=
3
k
Therefore percentage error in volume is
3
k
.
The angle between two tangents to the ellipse
x
2
16
+
y
2
9
=
1
at the points where the line
y
=
1
cuts the curve is
Report Question
0%
π
4
0%
tan
−
1
6
√
2
7
0%
π
2
0%
none of these
Explanation
Substituting
y
=
1
in
x
2
16
+
y
2
9
=
1
We get
x
=
±
8
√
2
3
And slope of tangents
d
y
d
x
=
9
x
16
y
=
m
1
,
m
2
=
±
3
√
2
2
Therefore
t
a
n
(
θ
)
=
m
1
−
m
2
1
+
m
1
m
2
=
|
−
6
√
2
7
|
⇒
θ
=
t
a
n
−
1
(
6
√
2
7
)
A tangent to the curve
y
=
∫
x
0
|
t
|
d
t
, which is parallel to the line y=x, cuts off an intercept from the y-axis equal to
Report Question
0%
1
0%
−
1
2
0%
1
2
0%
−
1
Explanation
Since the integral is in the first quadrant
|
t
|
=
t
Thus
∫
x
x
=
0
|
t
|
.
d
t
=
∫
x
x
=
0
t
.
d
t
=
x
2
2
Or
2
y
=
x
2
is the equation of the curve.
Now
2
y
′
=
2
x
Or
y
′
=
x
...(i)
Now the tangent is parallel to
y
=
x
Hence slope
=
y
′
=
1
Thus the x-coordinate of point of contact is 1.
Hence
y
=
1
2
.
Hence equation of the tangent will be
y
−
1
2
=
(
x
−
1
)
.
Or
x
−
y
=
1
2
Or
y
=
x
−
1
2
.
Hence intercept cut on the y axis is
−
1
2
.
Angle between the tangents to the curve
y
=
x
2
−
5
x
+
6
at the points
(
2
,
0
)
and
(
3
,
0
)
is
Report Question
0%
π
2
0%
π
3
0%
π
6
0%
π
4
Explanation
Given equation of curve
y
=
x
2
−
5
x
+
6
⇒
d
y
d
x
=
2
x
−
5
Slope of tangent to the curve at
(
2
,
0
)
is
(
d
y
d
x
)
(
2
,
0
)
=
2
(
2
)
−
5
=
−
1
=
m
1
Slope of tangent to the curve at
(
3
,
0
)
is
(
d
y
d
x
)
(
3
,
0
)
=
2
(
3
)
−
5
=
1
=
m
2
Since
m
1
m
2
=
−
1
∴
Angle between the tangents to the curve at
(2,0)
and
(3, 0)
is
\displaystyle \dfrac{\pi}{2}
The number of tangents to the curve
\displaystyle y= e^{\left | x \right |}
at the point
(0,1)
is
Report Question
0%
2
0%
1
0%
4
0%
0
Explanation
For
x>0
,
y=e^{x}
.
\dfrac{dy}{dx}=e^{x}
.
Now
\dfrac{dy}{dx}_{x=0}=1
.
Hence
y-1=1(x-0)
Or
x-y+1=0
is the required equation of tangent.
Similarly for
x<0
y=e^{-x}
.
\dfrac{dy}{dx}=-e^{-x}
.
Now
\dfrac{dy}{dx}_{x=0}=-1
.
Hence
y-1=-1(x-0)
Or
x+y-1=0
is the required equation of tangent.
Hence at
x=0
we will have 2 tangents to the curve
y=e^{|x|}
which are mutually perpendicular.
The curve
y+e^{xy}+x= 0
has a tangent parellel to y-axis at a point
Report Question
0%
\left ( -1,\:0 \right )
0%
\left ( 1,\:0 \right )
0%
\left ( 1,\:1 \right )
0%
\left ( 0,\:0 \right )
Explanation
\dfrac{dy}{dx}+e^{xy}[x\dfrac{dy}{dx}+y]+1=0
Or
\dfrac{dy}{dx}[1+x.e^{xy}]+1+y.e^{xy}=0
Or
\dfrac{dy}{dx}=\dfrac{-(1+y.e^{xy})}{1+x.e^{xy}}
Now
1+xe^{xy}=0
since the slope of the tangent is
90^{0}
.
Hence
xe^{xy}=-1
Or
x(-x-y)=-1
Or
x^{2}+xy=1
Or
y=\dfrac{1-x^{2}}{x}
Or
y=\dfrac{1}{x}-x
...(i)
Considering
y=0
,
x^{2}=1
x=\pm1
.
Hence we get 2 points
(1,0)
and
(-1,0)
.
Out of these 2, only
(-1,0)
lies on the curve.
Hence the required point is
(-1,0)
.
The tangent to the curve
\displaystyle y=e^{x}
drawn at the point
\displaystyle \left ( c, e^{c} \right )
intersects the line joining the points
\displaystyle \left ( c-1, e^{c-1} \right )
\displaystyle \left ( c+1, e^{c+1} \right )
Report Question
0%
on the left of
\displaystyle x=c
0%
on the right of
\displaystyle x=c
0%
at no point
0%
at all points
Explanation
Equation of straight line joining
A\left( c+1,{ e }^{ c+1 } \right)
and
B\left( c-1,{ e }^{ c-1 } \right)
is
\displaystyle y-{ e }^{ c+1 }=\dfrac { { e }^{ c+1 }-{ e }^{ c-1 } }{ 2 } \left( x-c-1 \right)
(1)
Equation of tangent at
\left( c,{ e }^{ c } \right)
is
y-{ e }^{ c }={ e }^{ c }\left( x-c \right)
(2)
Subtracting (1) from (2),we get
\displaystyle { e }^{ c }\left( e-1 \right) ={ e }^{ c }\left[ \left( x-c \right) -\dfrac { 1 }{ 2 } \left( e-{ e }^{ -1 } \right) \left( x-c \right) +\dfrac { 1 }{ 2 } \left( e-{ e }^{ -1 } \right) \right]
\displaystyle \Rightarrow \dfrac { 1 }{ 2 } \left( e+{ e }^{ -1 } \right) -1=\left( x-c \right) \left[ 1-\dfrac { 1 }{ 2 } \left( e-{ e }^{ -1 } \right) \right]
\displaystyle \Rightarrow x-c=\dfrac { e+{ e }^{ -1 }-2 }{ 2-e+{ e }^{ -1 } } <0
[
\because e+{ e }^{ -1 }>2
and
2+{ e }^{ -1 }-e<0
]
\Rightarrow x<c
Thus the two lines meet to the left of
x=c
For
a\in \left[ \pi ,2\pi \right]
and
n\in Z
, the critical points of
\displaystyle f\left( x \right)=\frac { 1 }{ 3 } \sin { a } \tan ^{ 3 }{ x } +\left( \sin { a } -1 \right) \tan { x } +\sqrt { \frac { a-2 }{ 8-a } }
are
Report Question
0%
x=n\pi
0%
x=2n\pi
0%
x=(2n+1)\pi
0%
None of these
Explanation
Given,
\displaystyle f\left( x \right)=\dfrac { 1 }{ 3 } \sin { a } \tan ^{ 3 }{ x } +\left( \sin { a } -1 \right) \tan { x } +\sqrt { \dfrac { a-2 }{ 8-a } }
f'\left( x \right) =\sin { a } \tan ^{ 2 }{ x } \sec ^{ 2 }{ x } +\left( \sin { a } -1 \right) \sec ^{ 2 }{ x } \\ =\left( \sin { a } \tan ^{ 2 }{ x } +\sin { a } -1 \right) \sec ^{ 2 }{ x }
At critical points, we must have
f'(x)=0
\Rightarrow \sin { a } \tan ^{ 2 }{ x } +\sin { a } -1=0\left( \because \sec ^{ 2 }{ x } \neq 0\:for\:any\:x\in R \right)
\displaystyle \Rightarrow \tan ^{ 2 }{ x } =\dfrac { 1-\sin { a } }{ \sin { a } }
Since
\displaystyle a\in \left[ \pi ,2\pi \right] ,\dfrac { 1-\sin { a } }{ \sin { a } } <0
\displaystyle \therefore \tan ^{ 2 }{ x } =\dfrac { 1-\sin { a } }{ \sin { a } }
has no solution in
R
\Rightarrow f(x)
has no critical points
Report Question
0%
Assertion is true and Reason is true; Reason is a correct explanation for Assertion.
0%
Assertion is True, Reason is true; Reason is not a correct explanation for Assertion.
0%
Assertion is true, Reason is false
0%
Assertion is false, Reason is true
Explanation
We have
\displaystyle y={ x }^{ 2 }+bx+c\Rightarrow \dfrac { dy }{ dx } =2x+b
Since the curve touches the line
y=x
at the point
\left( 1,1 \right)
{ \left[ 2x+b \right] }_{ \left( 1,1 \right) }^{ }=1\Rightarrow 2+b=1\Rightarrow b=-1
Also, the curve passes through the point
\left( 1,1 \right)
\therefore 1=1+b+c\Rightarrow c=-b=1
\displaystyle \therefore y={ x }^{ 2 }-x+1\Rightarrow \dfrac { dy }{ dx } =2x-1
Now,
\displaystyle \dfrac { dy }{ dx } <0\Rightarrow 2x-1<0\Rightarrow x<\dfrac { 1 }{ 2 }
\displaystyle y=4x^{2}
and
\displaystyle y= x^{2}.
The two curves
Report Question
0%
intersect each other
0%
touch each other
0%
do not meet
0%
represent parabola
Explanation
y=4x^{2}
and
y=x^{2}
represent two parabola concave upward and symmetric about positive y-axis. Both the curves do not intersect, however they touch each other at
x=0
.
y'=8x
and
y'=2x
Now
8x=2x
Or
x=0
Hence both curves have equal slope at
x=0
and are horizontal (parallel to x axis)at
x=0
If the normal to the curve
\displaystyle y= f\left ( x \right )
at the point
\displaystyle \left ( 3, 4 \right )
makes an angle
\displaystyle \frac{3\pi}{4}
with the positive x-axis then
\displaystyle f'\left ( 3 \right )
is equal to
Report Question
0%
-1
0%
\displaystyle -\frac{3}{4}
0%
\displaystyle \frac{4}{3}
0%
1
Explanation
Slope of normal
=\dfrac{-1}{f'(x)}
=tan(\dfrac{3\pi}{4})
=-1
Hence
f'(x)=1
Or
\dfrac{dy}{dx}=1
Or
y=x+c
Hence
y=f(x)
is an equation of a straight line parallel to
y=x
.
Hence
f'(x)
is independent of x and its value is 1.
Find the slopes of the tangents of the curve
y=(x+1)(x-3)
at the points where it cuts the X-axis.
Report Question
0%
4
0%
-4
0%
2
0%
-2
Explanation
f(x)=(x+1)(x-3)
Now
f(x)=0
\Rightarrow x=-1,x=3
Differentiating
f(x)
with respect to x
\dfrac{dy}{dx}=x+1+x-3
=2x-2
=2(x-1)
Now slope of the tangent at
(h,k)
will be
\dfrac{dy}{dx}_{h,k}
Hence slopes of the tangent at
x=-1
and
x=3
, will be
\dfrac{dy}{dx}_{x=-1}=2(x-1)_{x=-1}=-4
And
\dfrac{dy}{dx}_{x=3}=2(x-1)_{x=3}=4
Find the points on the curve
y=x^{3}
, the tangents at which are inclined at an angle of
60^{\circ}
to x-axis.
Report Question
0%
x=\pm\dfrac{1}{\sqrt{\sqrt{3}}}, y =\dfrac{1}{\sqrt{3}}.\dfrac{1}{\sqrt{\sqrt{3}}}
.
0%
x=\dfrac{1}{\sqrt{\sqrt{3}}}, y =\dfrac{1}{\sqrt{3}}.\dfrac{1}{\sqrt{\sqrt{3}}}
.
0%
x=\pm\dfrac{1}{\sqrt{\sqrt{3}}}, y =\pm \dfrac{1}{\sqrt{3}}.\dfrac{1}{\sqrt{\sqrt{3}}}
.
0%
x=-\dfrac{1}{\sqrt{\sqrt{3}}}, y =\pm \dfrac{1}{\sqrt{3}}.\dfrac{1}{\sqrt{\sqrt{3}}}
.
Explanation
Hence slope of tangents
=tan60^{0}
=\sqrt{3}
=\dfrac{dy}{dx}
Hence
\dfrac{dy}{dx}
=3x^{2}
=\sqrt{3}
Or
x^{2}=\dfrac{1}{\sqrt{3}}
Hence
x=\pm\dfrac{1}{\sqrt{\sqrt{3}}}
.
Thus y
=\dfrac{1}{\sqrt{3}}.\dfrac{1}{\sqrt{\sqrt{3}}}
.
Find the points on the curve
y=x/(1-x^{2})
where the tangents makes an angle of
\pi /4
with x-axis
Report Question
0%
(\sqrt { 3 } ,-\sqrt { \dfrac { 2 }{ 3 } } ),(-\sqrt { 2 } ,\sqrt { \dfrac { 2 }{ 3 } } )
0%
(\sqrt { 3 } ,-\sqrt { \dfrac { 3 }{ 4 } } ),(-\sqrt { 3 } ,\sqrt { \dfrac { 3 }{ 4 } } )
0%
(\sqrt { 3 } ,-\sqrt { \dfrac { 3 }{ 2 } } ),(-\sqrt { 3 } ,\sqrt { \dfrac { 3 }{ 2 } } )
0%
none of these
Explanation
\dfrac{dy}{dx}=tan45^{0}
Or
\dfrac{dy}{dx}=1
Or
\dfrac{(1-x^{2})-x(-2x)}{(1-x^{2})^{2}}=1
Or
1-x^{2}+2x^{2}=(1-x^{2})^{2}
Or
1+x^{2}=1-2x^{2}+x^{4}
Or
x^{4}-3x^{2}=0
Or
x^{2}[x^{2}-3]=0
x=0
or
x=\pm\sqrt{3}
Hence
y=\dfrac{\sqrt{3}}{1-3}=-\dfrac{\sqrt{3}}{2}
y=\dfrac{-\sqrt{3}}{1-3}=\dfrac{\sqrt{3}}{2}
Hence
\left(\sqrt{3},-\dfrac{\sqrt{3}}{2}\right),\left(-\sqrt{3},\dfrac{\sqrt{3}}{2}\right)
.
Find the condition that the line
\displaystyle Ax+By= 1
may be a normal to the curve
\displaystyle a^{n-1}y=x^{n}.
Report Question
0%
\displaystyle a^{n}B\left ( B^{2}+nA^{2} \right )^{n}=A^{n}n^{n}.
0%
\displaystyle a^{n-1}B\left ( B^{2}+nA^{2} \right )^{n-1}=A^{n}n^{n}.
0%
\displaystyle a^{n}B\left ( B^{2}+nA^{2} \right )^{n-1}=A^{n}n^{n}.
0%
\displaystyle a^{n-1}B\left ( B^{2}-nA^{2} \right )^{n-1}=A^{n}n^{n}.
Explanation
Given,
\displaystyle a^{n-1}y=x^{n}
\displaystyle \therefore \dfrac{dy}{dx}=n\dfrac{x^{n-1}}{a^{n-1}}=n\dfrac{x^{n-1}}{a^{n-1}}\cdot \dfrac{1}{x}=n\dfrac{y}{x}.
\displaystyle \therefore
Normal is:
\displaystyle Y-y=-\dfrac{1}{dy/dx}\left ( X-x \right) =-\dfrac{x}{ny}\left ( X-x \right )
\displaystyle \therefore Xx+Yny=ny^{2}+x^{2}.
Compare with
AX+BY=1
\displaystyle \therefore \dfrac{X}{A}=\dfrac{ny}{B}= \dfrac{ny^{2}+x^{2}}{1}=k,
say.
\displaystyle \therefore x= Ak, y=(Bk/n)
and
\displaystyle ny^{2}+x^{2}=k
or
\displaystyle k^{2}\left [ \left ( B^{2}/n+A^{2} \right ) \right ]=k
\displaystyle \therefore k=\dfrac{n}{B^{2}+nA^{2}}
..(1)
Now
\displaystyle a^{n-1}y=x^{n}.
Put for
x
and
y
.
\displaystyle a^{n-1}y\cdot \dfrac{Bk}{n}= A^{n}k^{n}
\Rightarrow\displaystyle a^{n-1}B= nA^{n}k^{n-1}
\Rightarrow\displaystyle a^{n-1}B=nA^{n}\cdot \left ( \dfrac{n}{B^{2}+nA^{2}} \right )^{n-1},
by (1)
\Rightarrow\displaystyle a^{n-1}B\left ( B^{2}+nA^{2} \right )^{n-1}=A^{n}n^{n}.
Above is the required condition.
If the normal to the curve
y=f(x)
at the point
(3,4)
makes an angle
3\pi /4
with the positive x-axis, then
f'(3)=
Report Question
0%
-1
0%
0
0%
1
0%
\sqrt 3
Explanation
Tangent being perpendicular to given line of slope 2, will have its slope as -
\displaystyle \dfrac{1}{2}
.
Slope of tangent=
\displaystyle -\dfrac{fx}{fy}=-\dfrac{6x+1}{2(y+1)}=-\dfrac{1}{2}\therefore y=6x
.
Sloping with the given curve, we have
\displaystyle 3x^{2}+36x^{2}+x+12x=0
or
13x(3x+1)=0\therefore x=0, -1/3 \therefore y=0, -2
Hence the two points are
\displaystyle (0,0),\left ( -\dfrac{1}{3},-2 \right )
\displaystyle \therefore y=-\dfrac{1}{2}x
and
y+2=-\dfrac{1}{2}\left ( x+\dfrac{1}{3} \right )
or
2y+x=0
and
\displaystyle 2y+x+\dfrac{13}{3}=0
Ans: D
The curve
\displaystyle y-e^{xy}+x=0
has a vertical tangent at the point
Report Question
0%
(1,\ 1)
0%
no\ point
0%
(0,\ 1)
0%
(1,\ 0)
Explanation
\dfrac{dy}{dx}-e^{xy}[x\dfrac{dy}{dx}+y]+1=0
Or
\dfrac{dy}{dx}[1-x.e^{xy}]+1-y.e^{xy}=0
Or
\dfrac{dy}{dx}=\dfrac{-(1-y.e^{xy})}{1-x.e^{xy}}
Now
1-xe^{xy}=0
since the slope of the tangent is
90^{0}
.
Hence
xe^{xy}=1
Or
x(x+y)=1
Or
x^{2}+xy=1
Or
y=\dfrac{1-x^{2}}{x}
Or
y=\dfrac{1}{x}-x
...(i)
Considering
y=0
,
x^{2}=1
x=\pm1
.
Hence we get 2 points
(1,0)
and
(-1,0)
.
Out of these 2, only
(1,0)
lies on the curve.
Hence the required point is
(1,0)
.
The set of all values of x for which the function
\displaystyle f\left ( x \right )= \left ( k^{2}-3k+2 \right )\left ( \cos ^{2}\frac{x}{4}-\sin ^{2}\frac{x}{4} \right )+\left ( k-1 \right )x+\sin 1
does not posses critical points is
Report Question
0%
\displaystyle \left ( -4,4 \right )
0%
\displaystyle \left ( 0,4 \right)
0%
\displaystyle \left ( 0,1 \right )\cup \left ( 1,4 \right )
0%
\displaystyle \left ( 0,2 \right )\cup \left ( 2,4 \right )
Explanation
\displaystyle f\left ( x \right )= \left ( k^{2}-3x+2 \right )\cos \frac{x}{2}+\left ( k-1 \right )x+\sin 1
\displaystyle {f}'\left ( x \right )= \left ( k-1 \right )\left ( k-2 \right )\left ( -\frac{1}{2}\sin \frac{x}{2} \right )+\left ( k-1 \right )
=\displaystyle \left ( k-1 \right )\left [ 1-\frac{k-2}{2}\sin \frac{x}{2} \right ]
Since f(x) does not possess critical points therefore f'(x) is not equal to zero.
i.e.,
\displaystyle k\neq 1
or
\displaystyle 1-\frac{k-2}{2}\sin \frac{x}{2}= 0
does not posses a solution or
\displaystyle \sin \frac{x}{2}= \frac{2}{k-2}
does not have a solution.
Hence we must
have
\displaystyle \left | \frac{2}{k-2} \right |> 1
as
\displaystyle \left | \sin \frac{x}{2} \right |< 1.
Above implies that
\displaystyle \left | k-2 \right |^{2}\leq 4
or
\displaystyle -2< \left ( k-2 \right )< 2
\displaystyle \because x^{2}< a^{2}\Rightarrow \left ( x^{2}-a^{2} \right )= -ive
or
\displaystyle -a< x< a
\displaystyle \therefore 0 < k< 4
. Also
\displaystyle k\neq 1.
\displaystyle \therefore k \epsilon \left ( 0,1 \right )\cup \left ( 1,4 \right )
Determine the intervals of monotonicity of
\displaystyle f \left ( x \right )= \log \left | x \right |.
Report Question
0%
increasing for
x>0
0%
increasing for
x<0
0%
decreasing for
x>0
0%
decreasing for
x<0
Explanation
\displaystyle f'\left ( x \right )=\frac{1}{x}, x \neq 0
, at
x=0,
f(x)
is not defined.
Hence
f (x)
is increasing for
\displaystyle x> 0
since
f'(x) > 0 \forall x \in (0, \infty)
and
f(x)
is decreasing for
x< 0
since
f'(x) < 0 \forall x \in (-\infty, 0)
If
\displaystyle x\cos \alpha +y\sin \alpha =p
touches
\displaystyle x^{2}+a^{2}y^{2}=a^{2},
then
Report Question
0%
\displaystyle p^{2}=a^{2}\sin^{2}\alpha +\cos^{2}\alpha
0%
\displaystyle p^{2}=a^{2}\cos^{2}\alpha +\sin^{2}\alpha
0%
\displaystyle 1/p^{2}=\sin^{2}\alpha +\alpha^{2}\cos^{2}\alpha
0%
\displaystyle 1/p^{2}=\cos^{2}\alpha +\alpha^{2}\sin^{2}\alpha
Explanation
Solving for y, we have
\displaystyle y=\dfrac { p }{ \sin { \alpha } } -x\cot { \alpha }
Putting this value in
{ x }^{ 2 }+{ a }^{ 2 }{ y }^{ 2 }={ a }^{ 2 }
, we have
\displaystyle { x }^{ 2 }+{ a }^{ 2 }{ \left( \dfrac { p }{ \sin { \alpha } } -x\cot { \alpha } \right) }^{ 2 }={ a }^{ 2 }
\displaystyle \Rightarrow { x }^{ 2 }\left( 1+{ a }^{ 2 }\cot ^{ 2 }{ \alpha } \right) -\dfrac { 2a^{ 2 }xp\cot { \alpha } }{ \sin { \alpha } } +\dfrac { { a }^{ 2 }{ p }^{ 2 } }{ \sin ^{ 2 }{ \alpha } } -{ a }^{ 2 }=0
The discriminant of this equation must be zero. So
\displaystyle { a }^{ 4 }\dfrac { { p }^{ 2 }\cot ^{ 2 }{ \alpha } }{ \sin ^{ 2 }{ \alpha } } =\left( 1+{ a }^{ 2 }\cot ^{ 2 }{ \alpha } \right) \left( \dfrac { { a }^{ 2 }{ p }^{ 2 } }{ \sin ^{ 2 }{ \alpha } } -{ a }^{ 2 } \right) \\ \Rightarrow { a }^{ 2 }{ p }^{ 2 }\cot ^{ 2 }{ \alpha } =\left( 1+{ a }^{ 2 }\cot ^{ 2 }{ \alpha } \right) \left( { p }^{ 2 }-\sin ^{ 2 }{ \alpha } \right) \\ \Rightarrow { p }^{ 2 }\left( { a }^{ 2 }\cot ^{ 2 }{ \alpha } -1-{ a }^{ 2 }\cot ^{ 2 }{ \alpha } \right) =\sin ^{ 2 }{ \alpha } -{ a }^{ 2 }\cos ^{ 2 }{ \alpha } \\ \Rightarrow { p }^{ 2 }={ a }^{ 2 }\cos ^{ 2 }{ \alpha } +\sin ^{ 2 }{ \alpha }
If the line
ax+by+c=0
is a normal to the curve
xy=1
, then
Report Question
0%
\displaystyle a> 0, b> 0
0%
\displaystyle a> 0, b< 0
0%
\displaystyle a< 0, b> 0
0%
\displaystyle a< 0, b< 0
Explanation
Given equation of curve
xy=1
x\dfrac{dy}{dx}+y=0
\Rightarrow \dfrac{dy}{dx}=-\dfrac{y}{x}
Slope of tangent at
P(x_1,y_1)=-\dfrac{1}{x_1^2}
Slope of normal at P is
=x^2
....(1)
Given equation of normal
ax+by+c=0
Slope of the normal at P is
-\dfrac{a}{b}
.....(2)
From (1) and (2),
x^2=-\dfrac{a}{b}
Since,
x^2 >0
-\dfrac{a}{b}>0
\Rightarrow \dfrac{a}{b}<0
i.e.
\dfrac{a}{b}
should be negative.
\Rightarrow a<0, b>0
or
a>0 , b<0
Find the co-ordinates of the points on the curve
\displaystyle y= x/\left ( 1+x^{2} \right )
where the tangent to the curve has greatest slope.
Report Question
0%
\left(\displaystyle \sqrt 3, \frac {\sqrt 3}4\right)
0%
(\displaystyle 0, 0)
0%
\left(\displaystyle -\sqrt 3, -\frac {\sqrt 3}4\right)
0%
\left(\displaystyle 1, \frac {1}2\right)
Explanation
Given curve
\displaystyle y= \dfrac{x}{\left ( 1+x^{2} \right )}
Here slope
\displaystyle S= \dfrac{dy}{dx}= \dfrac{\left \{ 1.\left ( 1+x^{2} \right )-2x.x \right \}}{\left ( 1+x^{2} \right )^{2}}
\displaystyle \Rightarrow S =\dfrac{\left ( 1-x^{2} \right )}{\left ( 1+x^{2} \right )^2}
Now,
\displaystyle \dfrac{dS}{dx}=\dfrac{ \left \{ -2x\left ( 1+x^{2} \right )^{2}-2\left ( 1+x^{2} \right ).2x\left ( 1-x^{2} \right ) \right \}}{\left ( 1+x^{2} \right )^{4}}
\displaystyle = \dfrac{-2x\left ( 1+x^{2} \right )\left ( 3-x^{2} \right )}{\left ( 1+x^{2} \right )^{4}}
\displaystyle \dfrac{dS}{dx}= \dfrac{2x\left [ x-\left ( -\sqrt{3} \right ) \right ]\left [ x-\sqrt{3} \right ]}{\left ( 1+x^{2} \right )^{3}}.
For maximum or minimum of S,
\dfrac{dS}{dx}=0
.
\displaystyle \Rightarrow x= -\sqrt{3}, 0, \sqrt{3}
.
Now, at
x=0
,
\dfrac{ds}{dx}
changes from +ive to -ive
At
\displaystyle x= \pm \sqrt{3}
. it changes from -ive to +ive .
Hence slope S is maximum when x=0 and min. when
\displaystyle x= \pm \sqrt{3}
, thus for greatest slope, we have x=0 and y=0.
Hence the required point is (0, 0), that is, the origin.
The line
y=x
is a tangent to the parabola
\displaystyle y= ax^{2}+bx+c
at the point
x=1
.If the parabola passes through the point
(-1,0)
, then determine
a, b, c.
Report Question
0%
\displaystyle a= \frac{1}{2}, b= \frac{1}{4}, c= \frac{1}{3}.
0%
\displaystyle a= \frac{1}{4}, b= \frac{1}{2}, c= \frac{1}{4}.
0%
\displaystyle a= 2, b= 1, c= 4.
0%
\displaystyle a= 4, b= 2, c= 4.
Explanation
Given equation of parabola is
\displaystyle y= ax^{2}+bx+c
\displaystyle \frac{dy}{dx}= 2ax+b
Slope of tangent to the curve at
x=1
is
2a+b
Given tangent is
y=x
. Slope of this tangent is
1.
So,
2a+b=1
...(1)
Since, the parabola passes through
(-1,0)
\displaystyle \therefore a-b+c= = 0
...(2)
Given
y=x
is a tangent at
x=1
\displaystyle \therefore y= 1.
Hence
(1,1)
lies both on tangent and parabola
\displaystyle \therefore a+b+c= 1
...(3)
Solving (1), (2) and (3), we get
\displaystyle a= \frac{1}{4}, b= \frac{1}{2}, c= \frac{1}{4}.
Find
\displaystyle \frac{dy}{dx}
if
\:y= \left [ x+\sqrt{x+} \sqrt{x}\right ]^{1/2}
, at
x=1
Report Question
0%
\dfrac{3+4\sqrt{2}}{8\sqrt{2}(\sqrt{1+\sqrt{2}})}
0%
Not defined
0%
0
0%
e
Explanation
y=[x+\sqrt{x+\sqrt{x}}]^{\frac{1}{2}}
y^{2}=x+\sqrt{x+\sqrt{x}}
y^{2}-x=\sqrt{x+\sqrt{x}}
y^{4}-2xy^{2}+x^{2}=x+\sqrt{x}
Differentiating with respect to x gives us
4y^{3}y'-2y^{2}-4xyy'+2x=1+\dfrac{1}{2\sqrt{x}}
At
x=1
4y^{3}_{x=1}y'-2y^{2}_{x=1}-4yy'_{x=1}+2=1+\dfrac{1}{2}
4y^{3}_{x=1}y'-2y^{2}_{x=1}-4yy'_{x=1}=\dfrac{-1}{2}
Now at
x=1
y=\sqrt{1+\sqrt{1+\sqrt{1}}}
=\sqrt{1+\sqrt{2}}
Substituting in the above equation gives us
4y^{3}_{x=1}y'-2y^{2}_{x=1}-4yy'_{x=1}=\dfrac{-1}{2}
4(\sqrt{1+\sqrt{2}})(1+\sqrt{2})y'-2(1+\sqrt{2})-4(\sqrt{1+\sqrt{2}})y'=\dfrac{-1}{2}
4(\sqrt{1+\sqrt{2}})y'(1+\sqrt{2}-1)=\dfrac{-1}{2}+2(1+\sqrt{2})
4\sqrt{2}(\sqrt{1+\sqrt{2}})y'=\dfrac{3}{2}+2\sqrt{2}
8\sqrt{2}(\sqrt{1+\sqrt{2}})y'=3+4\sqrt{2}
y'=\dfrac{3+4\sqrt{2}}{8\sqrt{2}(\sqrt{1+\sqrt{2}})}
Hence
\dfrac{dy}{dx}_{x=1}=\dfrac{3+4\sqrt{2}}{8\sqrt{2}(\sqrt{1+\sqrt{2}})}
A and B are points
(-2,0)
and
(1,3)
on the curve
\displaystyle y=4-x^{2}
. If the tangent at P on the curve be parallel to chord AB, then co-ordinates of point P are
Report Question
0%
\displaystyle \left ( -\frac{1}{3}, \frac{5}{3} \right )
0%
\displaystyle \left ( \frac{1}{2}, -\frac{15}{4} \right )
0%
\displaystyle \left ( -\frac{1}{2}, \frac{15}{4} \right )
0%
\displaystyle \left ( -\frac{1}{3}, \frac{1}{5} \right )
Explanation
Given equation of curve
\displaystyle y=4-x^{2}
...(i)
\dfrac{dy}{dx}=-2x
Given points
A(-2,0)
and
(1,3)
Slope of AB
=\dfrac{3}{3}=1
\Rightarrow -2x=1
\Rightarrow x=\dfrac{-1}{2}
So, by equation (i), we get
y=\dfrac{15}{4}
Hence, the point is
(-\dfrac{1}{2},\dfrac{15}{4})
The line
\dfrac xa+\dfrac yb=1
touches the curve
\displaystyle y=be^{-x/a}
at the point
Report Question
0%
(a,b/a)
0%
(-a,b/a)
0%
(a,a/b)
0%
None of these
Explanation
Simplifying the equation of the line we get
bx+ay=ab
ay=-bx+ab
Or
y=\dfrac{-b}{a}.x+b
Hence
\dfrac{dy}{dx}=\dfrac{-b}{a}
Or
-\dfrac{b}{a}.e^{-x/a}.=\dfrac{-b}{a}
Or
e^{-x/a}=1
Or
x=0
Hence
y=b
.
Therefore the point is
(0,b)
If the line,
\displaystyle ax+by+c= 0
is a normal to the curve
xy=2,
then
Report Question
0%
a < 0, b > 0
0%
a > 0, b < 0
0%
a > 0, b > 0
0%
a < 0, b < 0
Explanation
xy'+y=0
Or
y'=\dfrac{-y}{x}
Hence slope of normal
=\dfrac{x}{y}
=\dfrac{2}{y^{2}}
Hence the slope is always positive.
Now
slope of the line is
\dfrac{-a}{b}
Hence we are left with 2 options.
Either
a<0
and
b>0
Or
a>0
and
b<0
.
The function
\displaystyle f\left ( x \right )=2\log \left ( x-2 \right )-x^{2}+4x+1
increases in the interval
Report Question
0%
\displaystyle \left ( 1, 2 \right )
0%
\displaystyle \left (2, 3 \right )
0%
\displaystyle \left ( 5/2, 3 \right )
0%
\displaystyle \left ( 2, 4 \right )
Explanation
f(x) = 2\log(x-2)-x^2+4x+1
f'(x) = 2/(x-2)-2x+4 = 2\cdot \dfrac{1-(x-2)^2}{x-2}
f'(x) = -2 \cdot \dfrac{(x-1)(x-3)}{x-2}
For
f(x)
to be increasing,
f'(x) > 0
-2 \cdot \dfrac{(x-1)(x-3)}{x-2} > 0
\Rightarrow x \epsilon (2,3)
(since domain of f is
(2, \infty)
Hence option B, C are correct.
The critical points of the function
\displaystyle f\left ( x \right )= \frac{\left | x-1 \right |}{x^{2}}
are
Report Question
0%
0
0%
1
0%
2
0%
-1
Explanation
for
x\geq 1
f(x)=\dfrac { x-1 }{ { x }^{ 2 } }
&
f'(x)=\dfrac { -{ x }^{ 2 }+2x }{ { x }^{ 4 } }
for
x<1
f(x)=\dfrac { -x+1 }{ { x }^{ 2 } }
&
f'(x)=\dfrac { { x }^{ 2 }-2x }{ { x }^{ 4 } }
for critical points:
f'\left( x \right) =0
\Rightarrow x=0,2
now,
f'\left( 1+ \right) =1
&
f'\left( 1- \right) =-1
Since,
f'(x)
changes sign at
x=1
Therefore,
x=1
is also a critical point
Thus critical points of
f(x)
are
x=0,1,2
Ans: A,B,C
If
\displaystyle f\left ( 0 \right )=0
and
\displaystyle f''\left ( x \right )>0
for all
x > 0
, then
\displaystyle \frac{f(x)}{x}
Report Question
0%
decreases on
\displaystyle \left ( 0, \infty \right )
0%
increases on
\displaystyle \left ( 0, \infty \right )
0%
decreases on
\displaystyle \left ( 1, \infty \right )
0%
neither increases nor decreases on
\displaystyle \left ( 0, \infty \right )
Explanation
Given,
f\left( 0 \right) =0
f''(x)>0
, it means
f'(x)
is also increasing
Let
g(x)=\cfrac { f\left( x \right) }{ x }
g'\left( x \right) =\cfrac { xf'\left( x \right) -f\left( x \right) }{ { x }^{ 2 } }
f'\left( x \right)
is increasing and
x\epsilon \left( 0,\infty \right)
thus
f'\left( x \right) =
positive
f(x)=
positive
{ x }^{ 2 }=
positive
Therefore,
g\left( x \right) =
positive
>0
Thus,
\cfrac { f\left( x \right) }{ x }
increases for
x\epsilon \left( 0,\infty \right)
The interval(s) of decrease of of the function
\displaystyle f\left ( x \right )= x^{2}\log 27-6x\log 27+\left ( 3x^{2}-18x+24 \right )\log \left ( x^{2}-6x+8 \right )
is
Report Question
0%
\displaystyle \left ( 3-\sqrt{1+1/3e}, 2\right )
0%
\displaystyle \left ( 4, 3+\sqrt{1+1/3e}\right )
0%
\displaystyle \left ( 3, 4 +\sqrt{1+1/3e}\right )
0%
none of these
Explanation
f'\left( x \right) =2x\log27+\left( 6x-18 \right) \log\left( { x }^{ 2 }-6x+8 \right)
\displaystyle +\dfrac { \left( { 3x }^{ 2 }-18+24 \right) \left( 2x-6 \right) }{ { x }^{ 2 }-6x+8 }
=6\left( x-3 \right) \log\left( 3\left( { x }^{ 2 }-6x+8 \right) e \right)
For
f\left( x \right)
to be define
{ x }^{ 2 }-6x+8>0
\Rightarrow x>4
or
x<2
If
x>4
then
f'\left( x \right) <0
if
\log3\left( { x }^{ 2 }-6x+8 \right) e<0
i.e.3\left( { x }^{ 2 }-6x+8 \right) e<1\quad i.e.{ x }^{ 2 }-6x+\left( 8-1/3e \right) <0\\ i.e.\left( x-\left( 3+\sqrt { 1+1/3e } \right) \right) \left( x-\left( 3-\sqrt { 1+1/3e } \right) \right) <0\\ \Leftrightarrow 3-\sqrt { 1+1/3e } <x<3+\sqrt { 1+1/3e }
Hence
x\epsilon \left( 4,3+\sqrt { 1+1/3e } \right)
Similarly if
x<2
then
f'\left( x \right) <0
if
\log3\left( { x }^{ 2 }-6x+8 \right) e>0
i.e\quad x<3-\sqrt { 1+1/3e }
or
x>3+\sqrt { 1+1/3e }
Hence
x\epsilon \left( 3-\sqrt { 1+1/3e } ,2 \right)
The slope of the tangent to the curve represented by
x= t^{2}+3t-8
and
y= 2t^{2}-2t-5
at the point
M\left ( 2,-1 \right )
is
Report Question
0%
7/6
0%
2/3
0%
3/2
0%
6/7
Explanation
We first determine the value of
t
corresponding to the given values ofx and
y
. From
t^{2}+3t-8= 2
, we get
t = 2, -5
, and from
2t^{2}-2t-5= 2
we get
t = 2, -1
. Hence to the given point there corresponds the value
t = 2
. Therefore, the slope of the tangent at
\left ( 2,-1 \right )
is
\displaystyle \left | y' \right |_{t=2}=\left | \dfrac{dy/dt}{dx/dt} \right |_{t=2}\:=\left | \dfrac{4t-2}{2t+3} \right |_{t=2}=\:\dfrac{6}{7}
The number of critical points of the fuction
\displaystyle f'\left ( x \right ),
where
\displaystyle f'\left ( x \right )= \frac{\left | x-2 \right |}{x^{3}}
are
Report Question
0%
0
0%
1
0%
3
0%
4
Explanation
\displaystyle f\left( x \right) =\begin{cases} \dfrac { x-2 }{ { x }^{ 3 } } ,\quad \quad x>1 \\ \dfrac { 2-x }{ { x }^{ 3 } } ,\quad \quad x<1,x\neq 0 \end{cases}
\displaystyle f'\left( x \right) =\begin{cases} \dfrac { 2\left( 3-x \right) }{ { x }^{ 4 } } ,\quad x\in \left( -\infty ,0 \right) \cup \left( 0,1 \right) \\ \dfrac { 2\left( x-3 \right) }{ { x }^{ 4 } } ,\quad \quad x\in \left( 1,\infty \right) \end{cases}
\displaystyle f''\left( x \right) =\begin{cases} \dfrac { 6\left( x-4 \right) }{ { x }^{ 5 } } ,\quad x\in \left( -\infty ,0 \right) \cup \left( 0,1 \right) \\ \dfrac { 6\left( 4-x \right) }{ { x }^{ 5 } } ,\quad \quad x\in \left( 1,3 \right) \cup \left( 3,\infty \right) \end{cases}
f''\left( x \right)
doesn't exits at
x=3
Thus critical point of
f'\left( x \right)
is 3.
The value of a for which the function
\displaystyle f\left ( x \right )= \left ( 4a-3 \right )\left ( x+\log 5 \right )+2\left ( a-7 \right )\cot\left ( x/2 \right )\sin ^{2}\left ( x/2 \right )
does not possess critical points is
Report Question
0%
\displaystyle \left ( -\infty , -4/3 \right )
0%
\displaystyle \left ( -\infty , -1 \right )
0%
\displaystyle \left ( 1, \infty \right )
0%
\displaystyle \left ( 2, \infty \right )
Explanation
f\left( x \right) =\left( 4a-3 \right) \left( x+\log 5 \right) +2\left( a-7 \right) \cot \left( x/2 \right) \sin ^{ 2 } \left( x/2 \right)
\Rightarrow f\left( x \right) =\left( 4a-3 \right) \left( x+\log 5 \right) +\left( a-7 \right) \sin { x }
f(x)
posses critical points when
f'\left( x \right) =\left( 4a-3 \right) +\left( a-7 \right) \cos { x } =0
\Rightarrow \cos { x } =-\dfrac { 4a-3 }{ a-7 }
\Rightarrow -1\le -\dfrac { 4a-3 }{ a-7 } \le 1
\Rightarrow -\dfrac { 4 }{ 3 } \le a\le 2
Therefore,
f(x)
does not have critical points when
a\in (-\infty,-4/3)\cup (2,\infty)
Ans: A,D
The critical points of the function
\displaystyle f\left ( x\right )=\left ( x-2 \right )^{2/3}\left ( 2x+1\right )
are
Report Question
0%
-1,2
0%
1
0%
\displaystyle 1,-\frac{1}{2}
0%
1,2
Explanation
Given,
f(x)=(x-2)^{2/3}(3x+1)
\displaystyle f'\left( x \right) =\dfrac { 2 }{ 3 } { \left( x-2 \right) }^{ \frac { -1 }{ 3 } }\left( 2x+1 \right) +2{ \left( x-2 \right) }^{ \frac { 2 }{ 3 } }=10\left( x-1 \right) { \left( x-2 \right) }^{ \frac { -1 }{ 3 } }
f'\left( x \right) =0
\Rightarrow x=1
Also
f'\left( x \right)
does not exits at
x=2
Hence the critical points are
x=1,2
The coordinates of the point on the curve
\displaystyle \left ( x^{2}+1 \right )\left ( y-3 \right )=x
where a tangent to the curve has the greatest slope are given by
Report Question
0%
\displaystyle \left ( \sqrt{3}, 3+\sqrt{3}/4 \right )
0%
\displaystyle \left ( -\sqrt{3}, 3-\sqrt{3}/4 \right )
0%
\displaystyle \left ( 0, 3 \right )
0%
none of these
Explanation
Solving for y the given equation we have
\displaystyle y=3=\dfrac { x }{ { x }^{ 2 }+1 } \Rightarrow \dfrac { dy }{ dx } =\dfrac { 1-{ x }^{ 2 } }{ { \left( 1+{ x }^{ 2 } \right) }^{ 2 } } =f\left( x \right)
Now
\displaystyle f'\left( x \right) =\dfrac { -2x\left( 3-{ x }^{ 2 } \right) }{ { \left( 1+{ x }^{ 2 } \right) }^{ 2 } }
For extremum of
f\left( x \right)
, we have
f'\left( x \right) =0\Rightarrow x=0,x=\pm \sqrt { 3 }
At
x=0,f'\left( x \right)
changes sign from positive to negative
\Rightarrow f\left( x \right)
has maxima at
x=0
.
Thus the required point is
\left( 0,3 \right)
The angle at which the curve
y=ke^{kx}
intersects the
y
-axis is
Report Question
0%
\tan ^{-1}(k^{2})
0%
\cot ^{-1}(k^{2})
0%
\sin ^{-1}\left ( 1/\sqrt{1+k^{4}} \right )
0%
\sec ^{-1}\left ( 1/\sqrt{1+k^{4}} \right )
Explanation
\displaystyle \dfrac{dy}{dx}=k^{2}e^{kx}
.
The curve intersects
y
-axis at
\left ( 0,k \right )
So,
\displaystyle \dfrac{dy}{dx}|_{\left ( 0,k \right )}=k^{2}
.
If
\theta
is the angle at which the given
curve intersects the
y
-axis then
\displaystyle \tan \left ( \pi /2-\theta \right )=\dfrac{k^{2}-0}{1+0.k^{2}}=k^{2}
.
Hence
\theta =\cot ^{-1}k^{2}
The lines tangent to the curves
\displaystyle y^{3}-x^{2}y+5y-2x=0
and
\displaystyle x^{4}-x^{3}y^{2}+5x+2y=0
at the origin intersect at an angle
\displaystyle \theta
equal to
Report Question
0%
\displaystyle \frac{\pi }{6}
0%
\displaystyle \frac{\pi }{4}
0%
\displaystyle \frac{\pi }{3}
0%
\displaystyle \frac{\pi }{2}
Let
\displaystyle f\left ( x \right )=x^{3}+ax+b
with
\displaystyle a\neq b
and suppose the tangent lines to the graph of
f
at
x = a
and
x = b
have the same gradient Then the value of
f (1)
is equal to
Report Question
0%
0
0%
1
0%
\displaystyle -\frac{1}{3}
0%
\displaystyle \frac{2}{3}
Explanation
f(x)=x^3+ax+b
f'(x)=3x^2+a
Given gradient at
x=a
and at
x=b
are same
\Rightarrow 3a^2 +a=3b^2+a\Rightarrow b^2=a^2
But given
a\neq b
\Rightarrow a+b=0 ..(1)
Hence
f(1)=1+a+b=1
using (1)
A curve with equation of the form
\displaystyle y=ax^{4}+bx^{3}+cx+d
has zero gradient at the point (0, 1) and also touches the x-axis at the point (-1, 0) then the values of x for which the curve has a negative gradient are
Report Question
0%
x > -1
0%
x < 1
0%
x < -1
0%
\displaystyle -1\leq \times \leq 1
Explanation
Given,
\displaystyle y=ax^{4}+bx^{3}+cx+d
\Rightarrow y'=4ax^3+3bx^2+c
Using given conditions,
y(0)=1\Rightarrow d=1
y'(0)=0\Rightarrow c=0
y(-1)=0\Rightarrow a-b=-1 ..(1)
and
y'(-1)=0\Rightarrow 4a-3b=0 ..(2)
Solving equation (1) and (2) we get,
a=3,b=4
Hence the polynomial is,
y=3x^4+4x^3+1
y'=12x^2(1+x)
Now for negative gradient
y' < 0\Rightarrow 12x^2(1+x)< 0
\Rightarrow x< -1
If
f'(x) = g(x)\left ( x-a \right )^{2}
, where
g(a)\neq 0
and
g
is continuous at
x = a
then
Report Question
0%
f
is increasing near a if
g(a) > 0
0%
f
is increasing near a if
g(a) < 0
0%
f
is decreasing near a if
g(a) > 0
0%
f
is decreasing near a if
g(a) < 0
Explanation
Since
g
is continuous at
x = a
if
g(a) > 0
, there exist an open interval
I
containing
a
so that
g(x) > 0 \forall x\in I
\Rightarrow {f}'(x)\geq 0\forall x\in I
. Therefore,
f
is increasing near
a
.
Similarly
f
is decreasing near
a
if
g(a) < 0
.
Ans: A,D
The curve
y= ax^{3}+bx^{2}+cx+8
touches
x
-axis at
P\left ( -2,0 \right )
and cuts the
y
-axis at a point
Q(0,8)
where its gradient isThe values of
a
,
b
,
c
are respectively
Report Question
0%
-\displaystyle \frac{1}{2},-\frac{3}{4},3
0%
\displaystyle 3, -\frac{1}{2},-4
0%
\displaystyle -\frac{1}{2},-\frac{7}{4},2
0%
none of these
Explanation
Given,
y= a x^3+b x^2+cx+8
\therefore \displaystyle \dfrac{dy}{dx}= 3ax^{2}+2bx+c
Since the curve touches
x
-axis at
\left ( -2,0 \right )
so
\displaystyle \dfrac{dy}{dx}|_{\left ( -2,0 \right )}= 0\Rightarrow 12a-4b+c= 0
\left ( i \right )
The curve cut the
y
-axis at
\left ( 0,8 \right )
so
\displaystyle \dfrac{dy}{dx}|_{\left ( 0,8 \right )}= 3\Rightarrow c= 3
Also the curve passes through
\left ( -2,0 \right )
so
0= -8a+4b-2c+8\Rightarrow -8a+4b-2= 0
\left ( ii \right )
Solving
\left ( i \right )
and
\left ( ii \right )
a = -1/4
,
b =0
Suppose
f'(x)
exists for each
x
and
h(x) = f(x) - (f(x))^{2}+(f(x))^{3}
for every real number
x
. Then
Report Question
0%
h
is increasing whenever f is increasing
0%
h
is increasing whenever f is decreasing
0%
h
is decreasing whenever f is decreasing
0%
nothing can be said in general.
Explanation
h(x) = f(x) - (f(x))^{2}+(f(x))^{3}
{h}'(x)={f}'(x)-2{f}'(x)f(x)+3{f}'(x)f(x)^{2}
\displaystyle =3{f}'(x)\left [ f(x)^{2}-\frac{2}{3}f(x)+\frac{1}{3} \right ]
=3{f}'(x)\left [ \left ( f(x)-1/3 \right )^{2}+2/9 \right ]
Thus,
{h}'(x)>0
if
{f}'(x)>0
and
{h}'(x)<0
if
{f}'(x)<0
Therefore,
h
increases whenever
f
increases
and
h
decreases whenever
f
decreases
Ans: A,C
The critical points of the function
f\left( x \right)={ \left( x-2 \right) }^{ 2/3 }\left( 2x+1 \right)
are
Report Question
0%
1
and
2
0%
1
and
\displaystyle-\frac{1}{2}
0%
-1
and
2
0%
1
Explanation
\displaystyle f\left( x \right) ={ \left( x-2 \right) }^{ 2/3 }\left( 2x+1 \right)
\displaystyle f'\left( x \right) =\frac { 2 }{ 3 } { \left( x-2 \right) }^{ -1/3 }\left( 2x+1 \right) { \left( x-2 \right) }^{ 2/3 }=0.2
Clearly
f'(x)
is not defined at
x=2
.
\therefore x=2
is a critical point.
Another critical point is given by
f'(x)=0,
i.e.,
\displaystyle \dfrac { 2 }{ 3 } \dfrac { 2x+1 }{ { \left( x-2 \right) }^{ 1/3 } } +2{ \left( x-2 \right) }^{ 2/3 }=0
\displaystyle \Rightarrow \frac { 2 }{ 3 } \left( 2x+1 \right) +2\left( x-2 \right) =0
\Rightarrow 4x+2+6x-12=0
\Rightarrow x=1
The graph a function
f
is given.
On what interval is
f
increasing ?
Report Question
0%
(-1, 3]
0%
(-3,1)
0%
(-3,1]
0%
none of these
Explanation
A function
f(x)
is said to be increasing if as
x
increases
f(x)
increases as well
It can be Clearly observed from the graph that for the interval
(-1,3]
function f is increasing
The points of contact of the vertical tangents
x= 2-3\sin \theta
,
y= 3+2\cos \theta
are
Report Question
0%
\left ( 2,5 \right ),\left ( 2,1 \right )
0%
\left ( -1,3 \right ),\left ( 5,3 \right )
0%
\left ( 2,5 \right ),\left ( 5,3 \right )
0%
\left ( -1,3 \right ),\left ( 2,1 \right )
Explanation
For the tangents to be vertical,
\dfrac{dy}{dx}=\infty
Or
\dfrac{dx}{dy}=0
Or
\dfrac{dx}{d\theta}=0
Or
-3\cos\theta=0
Or
\theta=\dfrac{2n-1}{2}\pi
Hence
\theta=\dfrac{\pi}{2},\dfrac{3\pi}{2}
.
Now
x_{\tfrac{\pi}{2}}
=-1
y_{\tfrac{\pi}{2}}
=3
.
Similarly
x_{\tfrac{3\pi}{2}}=5
y_{\tfrac{3\pi}{2}}=3
.
Hence the points are
(-1,3)
and
(3,5)
.
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page