Processing math: 13%

CBSE Questions for Class 12 Commerce Maths Application Of Derivatives Quiz 4 - MCQExams.com

Let the parabolas y=x2+ax+b and y=x(cx) touch each other at the point (1,0). Then 
  • a=3
  • b=1
  • c=2
  • b+c=3
The curve xnan+ynbn=2 touches the line xa+yb=2 at the point
  • (b,a)
  • (a,b)
  • (1,1)
  • (1a,1b)
If the line joining the points (0,3) and (5,2) is the tangent to the curve y=cx+1 then the value of c is
  • 1
  • 2
  • 4
  • none of these
A point on the ellipse 4x2+9y2=36 where the tangent is equally inclided to the axes is
  • (913,413)
  • (913,413)
  • (913,413)
  • (413,913)
If error in  measuring the edge of a cube is k% then the percentage error in estimating its volume is
  • k
  • 3k
  • k3
  • none of these
The angle between two tangents to the ellipse x216+y29=1 at the points where the line y=1 cuts the curve is
  • π4
  • tan1627
  • π2
  • none of these
A tangent to the curve y=x0|t|dt, which is parallel to the line y=x, cuts off an intercept from the y-axis equal to
  • 1
  • 12
  • 12
  • 1
Angle between the tangents to the curve y=x25x+6 at the points (2,0) and (3,0) is
  • π2
  • π3
  • π6
  • π4
The number of tangents to the curve \displaystyle y= e^{\left | x \right |} at the point (0,1) is
  • 2
  • 1
  • 4
  • 0
The curve y+e^{xy}+x= 0 has a tangent parellel to y-axis at a point
  • \left ( -1,\:0 \right )
  • \left ( 1,\:0 \right )
  • \left ( 1,\:1 \right )
  • \left ( 0,\:0 \right )
The tangent to the curve \displaystyle y=e^{x} drawn at the point \displaystyle \left ( c, e^{c} \right ) intersects the line joining the points \displaystyle \left ( c-1, e^{c-1} \right )\displaystyle \left ( c+1, e^{c+1} \right )
  • on the left of \displaystyle x=c
  • on the right of \displaystyle x=c
  • at no point
  • at all points
For a\in \left[ \pi ,2\pi  \right] and n\in Z, the critical points of \displaystyle f\left( x \right)=\frac { 1 }{ 3 } \sin { a } \tan ^{ 3 }{ x } +\left( \sin { a } -1 \right) \tan { x } +\sqrt { \frac { a-2 }{ 8-a }  } are 
  • x=n\pi
  • x=2n\pi
  • x=(2n+1)\pi
  • None of these
  • Assertion is true and Reason is true; Reason is a correct explanation for Assertion.
  • Assertion is True, Reason is true; Reason is not a correct explanation for Assertion.
  • Assertion is true, Reason is false
  • Assertion is false, Reason is true
\displaystyle y=4x^{2} and \displaystyle y= x^{2}.
The two curves
  • intersect each other
  • touch each other
  • do not meet
  • represent parabola
If the normal to the curve \displaystyle y= f\left ( x \right ) at the point \displaystyle \left ( 3, 4 \right ) makes an angle \displaystyle \frac{3\pi}{4} with the positive x-axis then \displaystyle f'\left ( 3 \right ) is equal to
  • -1
  • \displaystyle -\frac{3}{4}
  • \displaystyle \frac{4}{3}
  • 1
Find the slopes of the tangents of the curve y=(x+1)(x-3) at the points where it cuts the X-axis.
  • 4
  • -4
  • 2
  • -2
Find the points on the curve y=x^{3}, the tangents at which are inclined at an angle of 60^{\circ} to x-axis.
  • x=\pm\dfrac{1}{\sqrt{\sqrt{3}}}, y =\dfrac{1}{\sqrt{3}}.\dfrac{1}{\sqrt{\sqrt{3}}}.
  • x=\dfrac{1}{\sqrt{\sqrt{3}}}, y =\dfrac{1}{\sqrt{3}}.\dfrac{1}{\sqrt{\sqrt{3}}}.
  • x=\pm\dfrac{1}{\sqrt{\sqrt{3}}}, y =\pm \dfrac{1}{\sqrt{3}}.\dfrac{1}{\sqrt{\sqrt{3}}}.
  • x=-\dfrac{1}{\sqrt{\sqrt{3}}}, y =\pm \dfrac{1}{\sqrt{3}}.\dfrac{1}{\sqrt{\sqrt{3}}}.
Find the points on the curve y=x/(1-x^{2}) where the tangents makes an angle of \pi /4 with x-axis
  • (\sqrt { 3 } ,-\sqrt { \dfrac { 2 }{ 3 } } ),(-\sqrt { 2 } ,\sqrt { \dfrac { 2 }{ 3 } } )
  • (\sqrt { 3 } ,-\sqrt { \dfrac { 3 }{ 4 } } ),(-\sqrt { 3 } ,\sqrt { \dfrac { 3 }{ 4 } } )
  • (\sqrt { 3 } ,-\sqrt { \dfrac { 3 }{ 2 } } ),(-\sqrt { 3 } ,\sqrt { \dfrac { 3 }{ 2 } } )
  • none of these
Find the condition that the line \displaystyle Ax+By= 1 may be a normal to the curve \displaystyle a^{n-1}y=x^{n}.
  • \displaystyle a^{n}B\left ( B^{2}+nA^{2} \right )^{n}=A^{n}n^{n}.
  • \displaystyle a^{n-1}B\left ( B^{2}+nA^{2} \right )^{n-1}=A^{n}n^{n}.
  • \displaystyle a^{n}B\left ( B^{2}+nA^{2} \right )^{n-1}=A^{n}n^{n}.
  • \displaystyle a^{n-1}B\left ( B^{2}-nA^{2} \right )^{n-1}=A^{n}n^{n}.
If the normal to the curve y=f(x) at the point (3,4) makes an angle 3\pi /4 with the positive x-axis, then f'(3)=
  • -1
  • 0
  • 1
  • \sqrt 3
The curve \displaystyle y-e^{xy}+x=0 has a vertical tangent at the point 
  • (1,\ 1)
  • no\ point
  • (0,\ 1)
  • (1,\ 0)
The set of all values of x for which the function \displaystyle f\left ( x \right )= \left ( k^{2}-3k+2 \right )\left ( \cos ^{2}\frac{x}{4}-\sin ^{2}\frac{x}{4} \right )+\left ( k-1 \right )x+\sin 1 does not posses critical points is 
  • \displaystyle \left ( -4,4 \right )
  • \displaystyle \left ( 0,4 \right)
  • \displaystyle \left ( 0,1 \right )\cup \left ( 1,4 \right )
  • \displaystyle \left ( 0,2 \right )\cup \left ( 2,4 \right )
 Determine the intervals of monotonicity of \displaystyle f \left ( x \right )= \log \left | x \right |. 
  • increasing for x>0
  • increasing for x<0
  • decreasing for x>0
  • decreasing for x<0
If \displaystyle x\cos \alpha +y\sin \alpha =p touches \displaystyle x^{2}+a^{2}y^{2}=a^{2}, then
  • \displaystyle p^{2}=a^{2}\sin^{2}\alpha +\cos^{2}\alpha
  • \displaystyle p^{2}=a^{2}\cos^{2}\alpha +\sin^{2}\alpha
  • \displaystyle 1/p^{2}=\sin^{2}\alpha +\alpha^{2}\cos^{2}\alpha
  • \displaystyle 1/p^{2}=\cos^{2}\alpha +\alpha^{2}\sin^{2}\alpha
If the line ax+by+c=0 is a normal to the curve xy=1, then
  • \displaystyle a> 0, b> 0
  • \displaystyle a> 0, b< 0
  • \displaystyle a< 0, b> 0
  • \displaystyle a< 0, b< 0
Find the co-ordinates of the points on the curve \displaystyle y= x/\left ( 1+x^{2} \right ) where the tangent to the curve has greatest slope.
  • \left(\displaystyle \sqrt 3, \frac {\sqrt 3}4\right)
  • (\displaystyle 0, 0)
  • \left(\displaystyle -\sqrt 3, -\frac {\sqrt 3}4\right)
  • \left(\displaystyle 1, \frac {1}2\right)
The line y=x is a tangent to the parabola \displaystyle y= ax^{2}+bx+c at the point x=1.If the parabola passes through the point (-1,0), then determine a, b, c.
  • \displaystyle a= \frac{1}{2}, b= \frac{1}{4}, c= \frac{1}{3}.
  • \displaystyle a= \frac{1}{4}, b= \frac{1}{2}, c= \frac{1}{4}.
  • \displaystyle a= 2, b= 1, c= 4.
  • \displaystyle a= 4, b= 2, c= 4.
Find \displaystyle \frac{dy}{dx} if \:y= \left [ x+\sqrt{x+} \sqrt{x}\right ]^{1/2}, at x=1
  • \dfrac{3+4\sqrt{2}}{8\sqrt{2}(\sqrt{1+\sqrt{2}})}
  • Not defined
  • 0
  • e
A and B are points (-2,0) and (1,3) on the curve \displaystyle y=4-x^{2}. If the tangent at P on the curve be parallel to chord AB, then co-ordinates of point P are 
  • \displaystyle \left ( -\frac{1}{3}, \frac{5}{3} \right )
  • \displaystyle \left ( \frac{1}{2}, -\frac{15}{4} \right )
  • \displaystyle \left ( -\frac{1}{2}, \frac{15}{4} \right )
  • \displaystyle \left ( -\frac{1}{3}, \frac{1}{5} \right )
The line \dfrac xa+\dfrac yb=1 touches the curve \displaystyle y=be^{-x/a} at the point
  • (a,b/a)
  • (-a,b/a)
  • (a,a/b)
  • None of these
If the line, \displaystyle ax+by+c= 0 is a normal to the curve xy=2, then
  • a < 0, b > 0
  • a > 0, b < 0
  • a > 0, b > 0
  • a < 0, b < 0
The function \displaystyle f\left ( x \right )=2\log \left ( x-2 \right )-x^{2}+4x+1  increases in the interval
  • \displaystyle \left ( 1, 2 \right )
  • \displaystyle \left (2, 3 \right )
  • \displaystyle \left ( 5/2, 3 \right )
  • \displaystyle \left ( 2, 4 \right )
The critical points of the function \displaystyle f\left ( x \right )= \frac{\left | x-1 \right |}{x^{2}} are
  • 0
  • 1
  • 2
  • -1
If \displaystyle f\left ( 0 \right )=0 and \displaystyle f''\left ( x \right )>0 for all x > 0, then \displaystyle \frac{f(x)}{x}
  • decreases on \displaystyle \left ( 0, \infty \right )
  • increases on \displaystyle \left ( 0, \infty \right )
  • decreases on \displaystyle \left ( 1, \infty \right )
  • neither increases nor decreases on \displaystyle \left ( 0, \infty \right )
The interval(s) of decrease of  of the function \displaystyle f\left ( x \right )= x^{2}\log 27-6x\log 27+\left ( 3x^{2}-18x+24 \right )\log \left ( x^{2}-6x+8 \right ) is
  • \displaystyle \left ( 3-\sqrt{1+1/3e}, 2\right )
  • \displaystyle \left ( 4, 3+\sqrt{1+1/3e}\right )
  • \displaystyle \left ( 3, 4 +\sqrt{1+1/3e}\right )
  • none of these
The slope of the tangent to the curve represented by x= t^{2}+3t-8 and y= 2t^{2}-2t-5 at the point M\left ( 2,-1 \right ) is

  • 7/6
  • 2/3
  • 3/2
  • 6/7
The number of critical points of the fuction \displaystyle f'\left ( x \right ), where \displaystyle f'\left ( x \right )= \frac{\left | x-2 \right |}{x^{3}} are
  • 0
  • 1
  • 3
  • 4
The value of a for which the function \displaystyle f\left ( x \right )= \left ( 4a-3 \right )\left ( x+\log 5 \right )+2\left ( a-7 \right )\cot\left ( x/2 \right )\sin ^{2}\left ( x/2 \right ) does not possess critical points is
  • \displaystyle \left ( -\infty , -4/3 \right )
  • \displaystyle \left ( -\infty , -1 \right )
  • \displaystyle \left ( 1, \infty \right )
  • \displaystyle \left ( 2, \infty \right )
The critical points of the function \displaystyle f\left ( x\right )=\left ( x-2 \right )^{2/3}\left ( 2x+1\right ) are
  • -1,2
  • 1
  • \displaystyle 1,-\frac{1}{2}
  • 1,2
The coordinates of the point on the curve \displaystyle \left ( x^{2}+1 \right )\left ( y-3 \right )=x where a tangent to the curve has the greatest slope are given by
  • \displaystyle \left ( \sqrt{3}, 3+\sqrt{3}/4 \right )
  • \displaystyle \left ( -\sqrt{3}, 3-\sqrt{3}/4 \right )
  • \displaystyle \left ( 0, 3 \right )
  • none of these
The angle at which the curve y=ke^{kx} intersects the y -axis is
  • \tan ^{-1}(k^{2})
  • \cot ^{-1}(k^{2})
  • \sin ^{-1}\left ( 1/\sqrt{1+k^{4}} \right )
  • \sec ^{-1}\left ( 1/\sqrt{1+k^{4}} \right )
The lines tangent to the curves \displaystyle y^{3}-x^{2}y+5y-2x=0 and \displaystyle x^{4}-x^{3}y^{2}+5x+2y=0 at the origin intersect at an angle \displaystyle \theta  equal to
  • \displaystyle \frac{\pi }{6}
  • \displaystyle \frac{\pi }{4}
  • \displaystyle \frac{\pi }{3}
  • \displaystyle \frac{\pi }{2}
Let \displaystyle f\left ( x \right )=x^{3}+ax+b with \displaystyle a\neq b and suppose the tangent lines to the graph of f at x = a and x = b have the same gradient Then the value of f (1) is equal to
  • 0
  • 1
  • \displaystyle -\frac{1}{3}
  • \displaystyle \frac{2}{3}
A curve with equation of the form \displaystyle y=ax^{4}+bx^{3}+cx+d has zero gradient at the point (0, 1) and also touches the x-axis at the point (-1, 0) then the values of x for which the curve has a negative gradient are
  • x > -1
  • x < 1
  • x < -1
  • \displaystyle -1\leq \times \leq 1
If f'(x) = g(x)\left ( x-a \right )^{2}, where g(a)\neq 0 and g is continuous at x = a then
  • f is increasing near a if g(a) > 0
  • f is increasing near a if g(a) < 0
  • f is decreasing near a if g(a) > 0
  • f is decreasing near a if g(a) < 0
The curve y= ax^{3}+bx^{2}+cx+8  touches x-axis at P\left ( -2,0 \right ) and cuts the y-axis at a point Q(0,8) where its gradient isThe values of a, b, c are respectively

  • -\displaystyle \frac{1}{2},-\frac{3}{4},3
  • \displaystyle 3, -\frac{1}{2},-4
  • \displaystyle -\frac{1}{2},-\frac{7}{4},2
  • none of these
Suppose f'(x) exists for each x and h(x) = f(x) - (f(x))^{2}+(f(x))^{3} for every real number x. Then
  • h is increasing whenever f is increasing
  • h is increasing whenever f is decreasing
  • h is decreasing whenever f is decreasing
  • nothing can be said in general.
The critical points of the function f\left( x \right)={ \left( x-2 \right)  }^{ 2/3 }\left( 2x+1 \right) are
  • 1 and 2
  • 1 and \displaystyle-\frac{1}{2}
  • -1 and 2
  • 1
The graph a function f is given. On what interval is f increasing ?
255196.png
  • (-1, 3]
  • (-3,1)
  • (-3,1]
  • none of these
The points of contact of the vertical tangents x= 2-3\sin \theta , y= 3+2\cos \theta are
  • \left ( 2,5 \right ),\left ( 2,1 \right )
  • \left ( -1,3 \right ),\left ( 5,3 \right )
  • \left ( 2,5 \right ),\left ( 5,3 \right )
  • \left ( -1,3 \right ),\left ( 2,1 \right )
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers