Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

CBSE Questions for Class 12 Commerce Maths Application Of Derivatives Quiz 5 - MCQExams.com

The angle at which the curve y=kekx intersects the y - axis is
  • tan1k2
  • cot1(k2)
  • sin1(11+k4)
  • sec1(1+k4)
The abscissa of the point on the curve xy=a+x the tangent at which cuts off equal intercepts from the co-ordinate axes is (a > 0)
  • a2
  • a2
  • a2
  • a2
The curve y=ax3+bx2+cx+5 touches the x - axis at P(2,0) and cuts the y-axis at a point Q, where its gradient is 3. Find a,b,c.
  • a=15,b=1,c=3
  • a=14,b=1,c=4
  • a=14,b=0,c=3
  • a=13,b=1,c=3
Let h be a twice continuously differentiable positive function on an open interval J. Let g(x)=ln(h(x)) for each xϵJ
Suppose (h(x))2>h for each \displaystyle x\epsilon J Then
  • g is increasing on J
  • g is decreasing on J
  • g is concave up on J
  • g is concave down on J
If the curve \displaystyle { \left( \frac { x }{ a }  \right)  }^{ n }+{ \left( \frac { y }{ b }  \right)  }^{ n }=2 touches the straight line \displaystyle \frac { x }{ a } +\frac { y }{ b } =2, then find the value of n.
  • 2
  • 3
  • 4
  • any real number
For the curve represented parametrically by the equations \displaystyle x=2\ln\cot t+1 and \displaystyle y=\tan t+\cot t
  • tangent at t = \displaystyle \dfrac {\pi }4 is parallel to x-axis
  • normal at t = \displaystyle \dfrac {\pi }4 is parallel to y=axis
  • tangent at t = \displaystyle \dfrac {\pi }4 is parallel to the line y = x
  • normal at t = \displaystyle \dfrac {\pi }4 is parallel to the line y = x
The coordinates of the point(s) on the graph of the function \displaystyle f(x)=\frac{x^{3}}3{-\frac{5x^{2}}{2}}+7x-4 where the tangent drawn cut off intercepts from the coordinate axes which are equal in magnitude but opposite in sign is
  • (2,\dfrac 83)
  • (3, \dfrac 72)
  • (1,\dfrac  56)
  • none
If the radius of a sphere is measured as 9 \ cm with an error of 0.03 \ cm then, find the approximate error in calculating its volume.
  • \displaystyle 9.72\pi\:\: cm^{3}
  • \displaystyle 7.92\pi\:\: cm^{3}
  • \displaystyle 8.72\pi\:\: cm^{3}
  • None of these
At what point of the curve \displaystyle y=2x^{2}-x+1 tangent is parallel to y = 3x + 4
  • (0, 1)
  • (1, 2)
  • (-1, 4)
  • (2, 7)
The slope of the normal to the curve \displaystyle x=a\left ( \theta -\sin \theta  \right ),\: \: y=a\left ( 1-\cos \theta  \right ) at point \displaystyle \theta =\dfrac{\pi }2 is
  • 0
  • 1
  • -1
  • \dfrac 1{\displaystyle \sqrt{2}}
asymptotes of the graph
  • \displaystyle x=\frac{3\pi }{2}
  • \displaystyle x=-\frac{\pi }{2}
  • \displaystyle x=\frac{\pi }{2}
  • \displaystyle x=-\frac{3\pi }{2}
The slope of the tangents to the curve y = (x + 1) (x - 3) at the points where it crosses x - axis are
  • \displaystyle \pm 2
  • \displaystyle \pm 3
  • \displaystyle \pm 4
  • None of these
Let f be a continuous, differentiable and bijective function. If the tangent to y=f\left( x \right) at x=b, then there exists at least one c\in \left( a,b \right) such that 
  • f'\left( c \right) =0
  • f'\left( c \right) >0
  • f'\left( c \right) <0
  • none of these
The normal to the curve \displaystyle \sqrt{x}+\sqrt{y}=\sqrt{a} is perpendicular to x axis at the point
  • (0, a)
  • (a, 0)
  • (\dfrac a  4, \dfrac a  4)
  • No where
If equation of normal at a point \displaystyle \left ( m^{2},-m^{3} \right ) on the curve \displaystyle x^{3}-y^{2}=0\: \: is\: \: y=3mx-4m^{3} then \displaystyle m^{2} equals
  • 0
  • 1
  • -\dfrac 2  9
  • \dfrac 2  9
The slope of normal to the curve \displaystyle y^{2}=4ax at a point \displaystyle \left ( at^{2},2at \right ) is
  • \dfrac 1  t
  • t
  • -t
  • -\dfrac 1  t
On the ellipse, 4x^2\, +\, 9y^2\, =\, 1, the points at which the tangents are parallel to the line 8x = 9y are
  • \left ( \displaystyle \frac{2}{5},\,\frac{1}{5} \right )
  • \left ( -\displaystyle \frac{2}{5},\,\frac{1}{5} \right )
  • \left ( -\displaystyle \frac{2}{5},\,-\frac{1}{5} \right )
  • \left ( \displaystyle \frac{2}{5},\,-\frac{1}{5} \right )
The slope of the tangent to the curve xy + ax - by = 0 at the point (1, 1) is 2 then values of a and b are respectively -
  • 1, 2
  • 2, 1
  • 3, 5
  • None of these
At what point the tangent line to the curve \displaystyle y=\cos \left ( x+y \right ),\left ( -2\pi \leq x\leq 2\pi  \right ) is parallel to x + 2y = 0
  • \displaystyle \left ( \dfrac {\pi }2, 0 \right )
  • \displaystyle \left ( -\dfrac {\pi }2, 0 \right )
  • \displaystyle \left (\dfrac{ 3\pi }2, 0 \right )
  • \displaystyle \left (-\dfrac{ 3\pi }2,\dfrac { \pi }2 \right )
The line \dfrac x a +\dfrac  y  b = 1 touches the curve \displaystyle y=be^{-\tfrac xa} at the point -
  • (0, a)
  • (0. 0)
  • (0, b)
  • (b, 0)
At what values of a, the curve x^4+3ax^3+6x^2+5 is not situated below any of its tangent lines
  • |a|\,>\,\displaystyle\frac{4}{3}
  • |a|\,<\,\displaystyle\frac{4}{3}
  • |a|\,>\,1
  • |a|\,<\,\displaystyle\frac{1}{3}
The point at which the tangent to the curve \displaystyle y=x^{3}+5 is perpendicular to the line x + 3y = 2 are
  • (6, 1), (-1, 4)
  • (6, 1) (4, -1)
  • (1, 6), (1, 4)
  • (1, 6), (-1, 4)
The points on the curve \displaystyle y^{2}=4a\left ( x+a\sin \frac{x}{a} \right ) at which the tangent is parallel to x axis lie on -
  • a straight line
  • a parabola
  • a circle
  • an ellipse
The equation of normal to the curve x+y=x^{y}, where it cuts x-axis is
  • y=x+1
  • y=-x+1
  • y=x-1
  • y=-x-1
The lines tangent to the curve x^3-y^3+x^2y-yx^2+3x-2y=0 and x^5-y^4+2x+3y=0 at the origin intersect at an angle \theta equal to
  • \displaystyle\frac{\pi}{6}
  • \displaystyle\frac{\pi}{4}
  • \displaystyle\frac{\pi}{3}
  • \displaystyle\frac{\pi}{2}
The points on the curve \displaystyle 9y^2=x^{3} where the normal to the curve makes equal intercepts with coordinates axes is :
  • \displaystyle \left ( 4,\frac{8}{3} \right )\: \: or\: \: \left ( 4,-\frac{8}{3} \right )
  • \displaystyle \left ( -4,\frac{8}{3} \right )
  • \displaystyle \left ( -4,-\frac{8}{3} \right )
  • None of these
If the line x -y = 0 is tangent to f(x) = b \ln x - x, then b lies in the interval
  • (1, 3)
  • (0, 1)
  • (4, 6)
  • (6, 8)
The coordinates of the points on the curve \displaystyle x=a\left ( \theta +\sin \theta  \right ),y=a\left ( 1-\cos \theta  \right ) where tangent is inclined an angle \displaystyle \dfrac{\pi }4 to the x-axis are -
  • (a, a)
  • \displaystyle \left ( a\left ( \frac{\pi }{2}-1 \right ),a \right )
  • \displaystyle \left ( a\left ( \frac{\pi }{2}+1 \right ),a \right )
  • \displaystyle \left ( a,a\left ( \frac{\pi }{2}+1 \right ) \right )
If the curve y^2=ax^3-6x^2+b passes through (0,\,1) and has its tangent parallel to y-axis at x=2, then
  • a=2,\,b=1
  • a=\displaystyle\frac{23}{8},\,b=1
  • a=-\displaystyle\frac{8}{23},\,b=1
  • a=-\displaystyle\frac{23}{8},\,b=1
Let tangent at a point P on the curve \displaystyle { x }^{ 2m }={ y }^{ \tfrac { n }{ 2 }  }={ a }^{ \tfrac { 4m+n }{ 2 }  } meets the x-axis and y-axis at A and B respectively, If AP:PB is \displaystyle \frac { n }{ \lambda m } , where P lies between A and B, then find the value of \displaystyle \lambda 
  • 4
  • 3
  • -4
  • -3
The minimum value of the polynomial.
p(x)=3{ x }^{ 2 }-5x+2
  • -\frac { 1 }{ 6 }
  • \frac { 1 }{ 6 }
  • \frac { 1 }{ 12 }
  • -\frac { 1 }{ 12 }
If the function \displaystyle f\left( x \right)=\left( { a }^{ 2 }-3a+2 \right) \cos { \frac { x }{ 2 }  } +\left( a-1 \right) x possesses critical points, then a belongs to the interval
  • \left( -\infty ,0 \right) \cup \left( 4,\infty  \right)
  • (-\infty ,0]\cup [4,\infty )
  • (-\infty ,0]\cup \left\{ 1 \right\} \cup [4,\infty )
  • None of these
If the tangent to the curve x = a(8 + sin \theta), y = a(1 + cos \theta ) at \theta = \displaystyle \frac{\pi}{3} makes an angle \alpha with x-axis, then \alpha is equal to
  • \displaystyle \frac{\pi}{3}
  • \displaystyle \frac{2\pi}{3}
  • \displaystyle \frac{\pi}{6}
  • \displaystyle \frac{5\pi}{6}
The curve which passes through (1, 2) and whose tangent at any point has a slope that is half of slope of the line joining origin to the point of contact, is -
  • A rectangle hyperbola
  • A circle
  • A parabola
  • A straight line through origin
  • Answer required
If f(x) = \dfrac{x}{ sin x} and g(x) = \dfrac{x}{tanx} where 0<x \leq 1, then in this interval f(x) is
  • both f(x) and g(x) are increasing functions
  • both f(x) and g(x) are decreasing functions
  • f(x) is an increasing function
  • g(x) is an increasing function
A curve \displaystyle y=f\left( x \right) ;\left( y>0 \right)   passes thorugh (1,1) and at point \displaystyle P(x,y) tangents cuts x-axis and y-axis at A and B respectively. If P divides AB  internally in the ratio 3 : 2, then the value of \displaystyle f\left( \frac { 1 }{ 8 }  \right)  is
  • 4
  • \displaystyle \frac { 1 }{ 4 }
  • \displaystyle 16\sqrt { 2 }
  • \displaystyle \frac { 1 }{ 16\sqrt { 2 } }
Determine the intervals over which the function is decreasing, increasing, and constant.
426431.png
  • Increasing [3, \infty ); Decreasing (-\infty , 3]
  • Increasing (-\infty , 3]; Decreasing [3, \infty )
  • Increasing (-\infty , 3]; Decreasing (-\infty , 3]
  • Increasing [3, \infty); Decreasing [3, \infty )
The slope of the tangent to the curve x={t}^{2}+3t-8, y=2{t}^{2}-2t-5 at the point (2,-1) is
  • \cfrac{22}{7}
  • \cfrac{6}{7}
  • \cfrac{7}{6}
  • \cfrac{-6}{7}
  • answer required
The line y=mx+1 is a tangent to the curve {y}{^2}=4x, if the value of m is
  • 1
  • 2
  • 3
  • \cfrac{1}{2}
  • answer required
The abscissa of the points, where the tangent to curve y={x}^{3} - 3{x}^{2} - 9x+5 is parallel to x-axis, are
  • x=0 and 0
  • x=1 and -1
  • x=1 and -3
  • x=-1 and 3
The points on the curve 9{y}^{2}={x}^{3}, where the normal to the curve makes equal intercepts with the axes are
  • \left( 4,\pm \cfrac { 8 }{ 3 } \right)
  • \left( 4,\cfrac { -8 }{ 3 } \right)
  • \left( 4,\pm \cfrac { 3 }{ 8 } \right)
  • \left( \pm 4,\cfrac { 3 }{ 8 } \right)
  • answer required
Angle between { y }^{ 2 }=x and { x }^{ 2 }=y at the origin is
  • 2\tan ^{ -1 }{ \left( \dfrac { 3 }{ 4 } \right) }
  • \tan ^{ -1 }{ \left( \dfrac { 4 }{ 3 } \right) }
  • \dfrac { \pi }{ 2 }
  • \dfrac { \pi }{ 4 }
If the line \alpha\,x+by+c=0 is a tangent to the curve xy=4, then
  • a < 0,\,b > 0
  • a \le o,\,b > 0
  • a < 0,\,b < 0
  • a \le 0,\,b < 0
Let y=e^{x^2} and y=e^{x^2}\sin\, x be two given curves. Then, angle between the tangents to the curves at any point their intersection is 
  • 0
  • \pi
  • \dfrac{\pi}{2}
  • \dfrac{\pi}{4}
The slope at any point of a curve y=f\left( x \right) is given by \dfrac { dy }{ dx } =3{ x }^{ 2 } and it passes through \left( -1,1 \right) . The equation of the curve is
  • y={ x }^{ 3 }+2
  • y=-{ x }^{ 3 }-2
  • y=3{ x }^{ 3 }+4
  • y=-{ x }^{ 3 }+2
Suppose that the equation f\left( x \right) ={ x }^{ 2 }+bx+c=0 has two distinct real roots \alpha and \beta . The angle between the tangent to the curve y=f\left( x \right) at the point \left( \dfrac { \alpha +\beta  }{ 2 } ,f\left( \dfrac { \alpha +\beta  }{ 2 }  \right)  \right) and the positive direction of the x-axis is
  • { 0 }^{ }
  • { 30 }^{ }
  • { 60 }^{ }
  • { 90 }^{ }
The equation of one of the curves whose slope at any point is equal to y+2x is
  • y=2(e^x+x-1)
  • y=2(e^x-x-1)
  • y=2(e^x-x+1)
  • y=2(e^x+x+1)
The function f(x)=ax+b is strictly increasing for all real x, if
  • a> 0
  • a< 0
  • a=0
  • a\le 0
The equation of normal of x^2+y^2-2x+4y-5=0 at (2,\,1) is
  • y=3x-5
  • 2y=3x-4
  • y=3x+4
  • y=x+1
The coordinates of the point P on the curve x = a(\theta + \sin \theta), y = a(1 - \cos \theta) where the tangent is inclined at an angle \dfrac {\pi}{4} to the x-axis, are
  • \left (a\left (\dfrac {\pi}{2} - 1\right ), a\right )
  • \left (a\left (\dfrac {\pi}{2} + 1\right ), a\right )
  • \left (a \dfrac {\pi}{2}, a\right )
  • (a, a)
0:0:3


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers