Processing math: 0%

CBSE Questions for Class 12 Commerce Maths Application Of Integrals Quiz 10 - MCQExams.com

Find the area enclosed between the curves y22yesin1x+x21+[x]+e2sin1x=0 
and line x = 0 and x=12 is (where [.] denotes greatest integer function)
  • 34+π6
  • 32+π6
  • 34π6
  • 32π6
If A_1 is the area bounded by y= \cos x, y = \sin xx=0  and A_2 the area bounded by y = \cos x , y = \sin x , y = 0 in (0,\frac{\pi}{2}) then \displaystyle  \dfrac{A_1}{A_2} equals to :
  • \dfrac{1}{2}
  • \dfrac{1}{\sqrt2}
  • 1
  • None of these
The area bounded by the curves y = sin^{-1} |sin  x| and y = (sin^{-1} | sin  x|)^{2}, where 0\leq x\leq 2\pi , is:
  • \dfrac{1}{3}+\dfrac{\pi ^{2}}{4} sq. units
  • \dfrac{1}{6}+\dfrac{\pi ^{3}}{8} sq. units
  • 2 sq. units
  • \displaystyle \frac{4}{3}+\pi ^{2}\frac{\pi -3}{6}  sq.units
If \left| z- (4 + 4i) \right| \geq  4, then area of the region bounded by the locii of z,\; iz,\; - z and -iz is:
  • 4(4-\pi )
  • 16(4-\pi )
  • 16(\pi -1)
  • 4(\pi -1)
If the area bounded by the curve y = f(x), the coordinate axes and the line x = x_1 is given by x_1e^{x_1}. Then f(x) equals
  • e^x
  • xe^x
  • xe^x-e^x
  • xe^x+e_x
If the area bounded by the curve |y|=sin^{-1}|x| and  x=1 is a(\pi+b), then the value a-b is:
  • 1
  • 2
  • 3
  • 4
The parabola y^{2} = 4x and x^{2}  = 4y divide the square region bounded by the lines x = 4, y = 4 and the coordinate axes. If S_{1}, S_{2}, S_{3} are the areas of these parts numbered from top to bottom respectively, then
  • S_{1} : S_{2}\equiv 1 : 1
  • S_{2} : S_{3}\equiv 1 : 2
  • S_{1} : S_{3}\equiv 1 : 1
  • S_{1} : (S_{1} + S_{2})\equiv 1 : 2
Area of the region bounded by the curve y = x^{2} and y = sec^{-1} [sin^{2}x] (where [ . ] denotes the greatest integer function) is
  • \frac{\pi}{3}\sqrt{\pi}
  • \frac{2\pi\sqrt{\pi}}{3}
  • \frac{4\pi\sqrt{\pi}}{3}
  • \frac{6\pi\sqrt{\pi}}{3}
  • \frac{3\pi\sqrt{\pi}}{2}
The area bounded by y=\sec^ {-1}{x}, y= \text{cosec}^{-1}{x} and the line x-1=0 is:
  • \ln(3+2\sqrt{2})-\displaystyle \frac{\pi}{2}
  • \displaystyle \frac{\pi}{2}+\ln(3+2\sqrt{2})
  • \pi - \ln3
  • \pi + \ln3
The area enclosed by x^2 + y^2 = 4, y = x^2 + x + 1,  y=\left [ \sin^{2}\displaystyle \frac{x}{4}+\cos\displaystyle \frac{x}{4} \right ] and x-axis (where [.] denotes the greatest integer function) is:
  • \displaystyle \frac{2\pi}{3}+\sqrt{3}-\displaystyle \frac{1}{6}
  • \displaystyle \frac{2\pi}{3}+2\sqrt{3}-\displaystyle \frac{1}{6}
  • 2\sqrt3-\frac{1}{3}
  • \displaystyle \frac{\pi}{3}+\sqrt3
The area bounded by the function f(x)=x^{2}:R^{+}\rightarrow R^{+} and its inverse function is:
  • \dfrac{1}{2}sq.units
  • \dfrac{1}{3}sq.units
  • \dfrac{2}{3}sq.units
  • \dfrac{1}{6}sq.units
Find the area of the region bounded by the curves y= log_{e}x ,  y=\sin ^{4} \pi x , x=0
  • \displaystyle\ \frac{11}{8}sq.units
  • \displaystyle\ \frac{9}{8}sq.units
  • \displaystyle\ \frac{13}{8}sq.units
  • \displaystyle\ \frac{15}{8}sq.units
State the following statement is True or False
The area bounded by the circle x^2 + y^2 = 1, x^2 + y^2 = 4 and the pair of lines \sqrt{3} (x^2 + y^2) = 4xy, is equal to \dfrac{\pi}{2}. The statement is true or false.
  • True
  • False
Find the area bounded by the curves \displaystyle\ y=\sqrt{1-x^{2}} and \displaystyle\ y=x^{3}-x . Also find the ratio in which the y-axis divide this area
  • \displaystyle\ \frac{\pi }{2} , \displaystyle\ \frac{\pi -1}{\pi +1}
  • \displaystyle\ \frac{\pi }{4} , \displaystyle\ \frac{\pi -1}{\pi +1}
  • \displaystyle\ \frac{\pi }{2} , \displaystyle\ \frac{\pi +1}{\pi -1}
  • None of these
Find the area of the region enclosed between the two circles \displaystyle\ x^{2}+y^{2}=1 & (x-1)^{2}+y^{2}=1
  • \displaystyle\ \frac{\pi }{6}-\frac{\sqrt{3}}{2} sq.units
  • \displaystyle\ \frac{\pi }{3}-\frac{\sqrt{3}}{2} sq.units
  • \displaystyle\ \frac{\pi }{6}-\frac{\sqrt{3}}{4} sq.units
  • \displaystyle\ \frac{\pi }{3}-\frac{\sqrt{3}}{4} sq.units
A polynomial function f(x) satisfies the condition f(x+1) =f(x)+2x+1. Find f(x) if f(0)=1. Find also the equations of the pair of tangents from the origin on the curve y=f(x) and compute the area enclosed by the curve and the pair of tangents.
  • f(x)=x^2+1;, y=\pm 2x; , \displaystyle A=\frac{2}{3} sq.units
  • f(x)=x^2-1;, y=\pm 2x; , \displaystyle A=\frac{2}{3} sq.units
  • f(x)=x^2+1;, y=\pm 2x; , \displaystyle A=\frac{3}{2} sq.units
  • f(x)=x^2-1;, y=\pm 2x; , \displaystyle A=\frac{3}{2} sq.units
Find the area enclosed the curves : y=ex\log { x } and \displaystyle y=\frac { \log { x }  }{ ex } where \log { e } =1
  • \displaystyle\frac { { e }^{ 2 }-5 }{ 4e }
  • \displaystyle\frac { { e }^{ 2 }+5 }{ 4e }
  • \displaystyle\frac { { e }^{ 2 }-3 }{ 2e }
  • \displaystyle\frac { { e }^{ 2 }+3 }{ 2e }
The area included between the curve { x }^{ 2 }+{ y }^{ 2 }={ a }^{ 2 } and \displaystyle \sqrt { \left| x \right|  } +\sqrt { \left| y \right|  } =\sqrt { a } \left( a>0 \right) is:
  • \displaystyle \left( \pi +\frac { 2 }{ 3 }  \right) { a }^{ 2 }
  • \displaystyle \left( \pi -\frac { 2 }{ 3 }  \right) { a }^{ 2 }
  • \displaystyle \frac { 2 }{ 3 } { a }^{ 2 }
  • \displaystyle \frac { 2\pi }{ 3 } { a }^{ 2 }
Sketch the region bounded by the curves  \displaystyle y=x^{2} &  \displaystyle\ y= 2/(1+x^{2}). Find the area:
  • \displaystyle\ \pi -\frac{2}{3}
  • \displaystyle\ \pi -\frac{1}{3}
  • \displaystyle\ \pi -\frac{5}{3}
  • \displaystyle\ \pi -\frac{7}{3}
The ratio in which the area bounded by the curves y^{2}=4x and x^{2}=4y is divided by the line x=1 is
  • 64 : 49
  • 15 : 34
  • 15 : 49
  • none of these
If f(x) be an increasing function defined on [a, b] then
max {f(t) such that a\leq t\leq x, a\leq x\leq b}=f(x)  & min {f(t), a\leq t\leq x, a\leq x\leq b}=f(a) and if f(x) be decreasing function defined on [a, b] then
max {f(t), a\leq t\leq x, a\leq x\leq b}=f(a),
min {f(t), a\leq t\leq x, a\leq x\leq b}=f(x).
On the basis of above information answer the following questions.
\int_{0}^{\pi }max\left \{ \sin x, \cos x \right \}dx is equal to
  • \sqrt{2}-1
  • \displaystyle 1-\frac{1}{\sqrt{2}}
  • \displaystyle 1+\frac{1}{\sqrt{2}}
  • None of these
The ratio of the area's bounded by the curves \displaystyle y^{2}=12x and \displaystyle x^{2}=12y is divided by the line \displaystyle x=3 is
  • 15 : 49
  • 9 : 15
  • 7 : 15
  • 7 : 5
The function \displaystyle f\left ( x \right )=\max \left \{ x^{2},\left ( 1-x \right )^{2},2x\left ( 1-x \right ) \forall 0\leq x\leq 1\right \} then area of the region bounded by the curve \displaystyle y=f\left ( x \right ) , x-axis and \displaystyle x=0,x=1 is equals,
  • \displaystyle \frac{27}{17}
  • \displaystyle \frac{9}{17}
  • \displaystyle \frac{18}{17}
  • None of these
Compute the area of the curvilinear triangle bounded by the y-axis & the curve, \displaystyle\ y=\tan x &  \displaystyle\ y=(2/3) \cos x
  • \displaystyle\ \frac{1}{3}+ ln\left [ \frac{\sqrt{3}}{2} \right ]sq.units
  • \displaystyle\ \frac{1}{3}- ln\left [ \frac{\sqrt{3}}{2} \right ]sq.units
  • \displaystyle\ \frac{2}{3}+ ln\left [ \frac{\sqrt{3}}{2} \right ]sq.units
  • \displaystyle\ \frac{1}{3}+ ln\left [ \frac{\sqrt{1}}{2} \right ]sq.units
The area bounded by \displaystyle x=a\cos ^{3}\theta,y=a\sin ^{3}\theta is:
  • \displaystyle \frac{3\pi a^{2}}{16}
  • \displaystyle \frac{3\pi a^{2}}{8}
  • \displaystyle \frac{3\pi a^{2}}{32}
  • \displaystyle 3\pi a^{2}
The area lying in the first quadrant inside the circle { x }^{ 2 }+{ y }^{ 2 }=12 and bounded by the parabolas { y }^{ 2 }=4x,{ x }^{ 2 }=4y is:
  • \displaystyle 2\left( \frac { \sqrt { 2 }  }{ 3 } +\frac { 3 }{ 2 } \sin ^{ -1 }{ \frac { 1 }{ 3 }  }  \right)
  • \displaystyle 4\left( \frac { \sqrt { 2 }  }{ 3 } +\frac { 3 }{ 2 } \sin ^{ -1 }{ \frac { 1 }{ 3 }  }  \right)
  • \displaystyle \left( \frac { \sqrt { 2 }  }{ 3 } +\frac { 3 }{ 2 } \sin ^{ -1 }{ \frac { 1 }{ 3 }  }  \right)
  • none of these
If f(x) be an increasing function defined on [a, b] then
max {f(t) such that a\leq t\leq x, a\leq x\leq b}=f(x)  & min {f(t), a\leq t\leq x, a\leq x\leq b}=f(a) and if f(x) be decreasing function defined on [a, b] then
max {f(t), a\leq t\leq x, a\leq x\leq b}=f(a),
min {f(t), a\leq t\leq x, a\leq x\leq b}=f(x).
On the basis of above information answer the following questions.
Let \displaystyle f\left ( x \right )=min \left \{ 1, 1-\cos x, 2\sin x \right \} then \displaystyle \int_{0}^{\pi}f\left ( x \right )dx is
  • \displaystyle \frac{\pi }{3}+1-\sqrt{3}
  • \displaystyle \frac{2\pi }{3}-1+\sqrt{3}
  • \displaystyle \frac{5\pi }{6}+1-\sqrt{3}
  • \displaystyle \frac{\pi }{6}+1-\sqrt{3}
The area of the plane region bounded by the curves x+2y^{2}=0 and x+3y^{2}=1 is
  • \displaystyle \frac{1}{3}
  • \displaystyle \frac{2}{3}
  • \displaystyle \frac{4}{3}
  • \displaystyle \frac{5}{3}
Find the area bounded by the curves \displaystyle x = y^{2} and \displaystyle x = 3-2y^{2}
  • 2 sq. units
  • 4 sq. units
  • 6 sq. units
  • 8 sq. units
The area bounded by the curves y=\log x, y=\log \left | x \right |, y=\left | \log x \right | and y=\left | \log \left | x \right | \right |
  • 4 sq. units
  • 6 sq. units
  • 10 sq. units
  • None of these
Let y=f(x) be the given curve and x=a, x=b be two ordinates then area bounded by the curve y=f(x), the axis of x between the ordinates x=a & x=b, is given by definite integral
\int_{a}^{b}ydx or \int_{a}^{b}f\left ( x \right )dx and the area bounded by the curve x=f(y), the axis of y & two abscissae y=c & y=d is given by \int_{c}^{d}xdy or \int_{c}^{d}f\left ( x \right )dy. Again if we consider two curves y=f(x), y=g(x) where f\left ( x \right )\geq g\left ( x \right ) in the interval [a, b] where x=a & x=b are the points of intersection of these two curves Shown by the graph given
Then area bounded by these two curves is given by
\int_{a}^{b}\left [ f\left ( x \right )-g\left ( x \right ) \right ]dx
On the basis of above information answer the following questions.

The area bounded by parabolas y=x^{2}+2x+1 & y=x^{2}-2x+1 and the line \displaystyle y=\frac{1}{4} is equal to

161838_6c80fc7958864f1f961bdcd5221bb036.png
  • \displaystyle \frac{2}{3} square unit
  • \displaystyle \frac{1}{3} square unit
  • \displaystyle \frac{3}{2} square unit
  • \displaystyle \frac{1}{2} square unit
If f(x) be an increasing function defined on [a, b] then
max {f(t) such that a\leq t\leq x, a\leq x\leq b}=f(x)  & min {f(t), a\leq t\leq x, a\leq x\leq b}=f(a) and if f(x) be decreasing function defined on [a, b] then
max {f(t), a\leq t\leq x, a\leq x\leq b}=f(a),
min {f(t), a\leq t\leq x, a\leq x\leq b}=f(x).
On the basis of above information answer the following questions.
\int_{0}^{\pi /2}min\left \{ \sin x, \cos x \right \}dx equals
  • 2\left ( \sqrt{3}-1 \right )
  • \sqrt{2}\left ( \sqrt{2}-1 \right )
  • \left ( \sqrt{3}-1 \right )
  • \sqrt{2}\left ( \sqrt{2}+1 \right )
The parabolas y^{2}=4x and x^{2}=4y divide the square region bounded by the lines x=4, y=4 and the coordinate axes. If S_{1}, S_{2}, S_{3} are respectively the areas of these parts numbered from top to bottom; S_{1}: S_{2}: S_{3} is
  • 1: 2: 3
  • 1: 2: 1
  • 1: 1: 1
  • 2: 1: 2
The  area bounded by { y }^{ 2 }+8x=16 and { y }^{ 2 }-24x=48 is \displaystyle \frac { a\sqrt { 6 }  }{ c } , then a+c=
  • 30
  • 32
  • 35
  • None
The area enclosed between the curves y=x^3 and y=\sqrt{x} is (in square units)
  • \displaystyle\frac{5}{3}
  • \displaystyle\frac{5}{4}
  • \displaystyle\frac{5}{12}
  • \displaystyle\frac{12}{5}
Find the area bounded by \displaystyle y = \cos ^{-1}x,y=\sin ^{-1}x and y-axis
  • \displaystyle \left ( 2-\sqrt{2} \right ) sq. units
  • \displaystyle \left ( \sqrt{2}-{2} \right ) sq. units
  • 2 \sqrt{2} sq. units
  • \sqrt {2} sq. units
Consider two curves \displaystyle C_{1}:y=\frac{1}{x} and \displaystyle C_{2} : y = \displaystyle lnx on the xy plane Let \displaystyle D_{1} denotes the region surrounded by \displaystyle C_{1}\displaystyle C_{2} and the line x = 1 and \displaystyle D_{2} denotes the region surrounded by \displaystyle C_{1}\displaystyle C_{2} and the line x = a If \displaystyle D_{1}=\displaystyle D_{2} then the value of 'a':
  • \displaystyle \frac{e}{2}
  • e
  • e-1
  • 2(e-1)
Suppose y = f(x) and y = g(x) are two functions whose graphs intersect at three points (0, 4), (2, 2) and (4, 0) with f(x) > g(x) for 0 < x < 2 and f(x) < g(x) for 2 < x < 4 . if \displaystyle \int_{0}^{4}\left ( f(x)-g(x) \right )dx=10 and \displaystyle \int_{2}^{4}\left ( g(x)-f(x) \right )dx=5, the area between two curves for 0 < x < 2, is:
  • 5
  • 10
  • 15
  • 20
The area bounded by the curves \displaystyle y=-\sqrt{-x} and \displaystyle x=-\sqrt{-y} were \displaystyle x,y\leq 0 
  • Can not be determined
  • is 1/3
  • is 2/3
  • is same as that of the figure by the curves \displaystyle y=\sqrt{-x};x\leq 0 and \displaystyle x=\sqrt{-y};y\leq 0
Area of the region enclosed between the curves \displaystyle x=y^{2}-1 and \displaystyle x = \left | y \right |\sqrt{1-y^{2}} is
  • 1
  • 4/3
  • 2/3
  • 2
Find the area of the region bounded by the curves \displaystyle x=\frac{1}{2},x=2,y=logx and y=2^{x}
  • \displaystyle \frac{4-\sqrt{2}}{\log2}-\frac{5}{2} \log2+\frac{3}{2}sq.units
  • \displaystyle \frac{4+\sqrt{2}}{\log2}-\frac{3}{2} \log2+\frac{5}{2}sq.units
  • \displaystyle \frac{4-\sqrt{2}}{\log2}-\frac{3}{2} \log2+\frac{5}{2}sq.units
  • \displaystyle \frac{4+\sqrt{2}}{\log2}-\frac{5}{2} \log2+\frac{3}{2}sq.units
 Area bounded by \displaystyle y=2x-{ x }^{ 2 } & \displaystyle (x-1{ ) }^{ 2 }+{ y }^{ 2 }=1 in first quadrant, is: 
  • \displaystyle \frac { \pi }{ 2 } -\frac { 4 }{ 3 }
  • \displaystyle \frac { \pi }{ 2 } -\frac { 2 }{ 3 }
  • \displaystyle \frac { \pi }{ 2 } +\frac { 4 }{ 3 }
  • \displaystyle \frac { \pi }{ 2 } +\frac { 2 }{ 3 }
In what ratio does the x-axis divide the area of the region bounded by the parabolas \displaystyle y=4x-x^{2} and \displaystyle y=x^{2}-x?
  • 4 : 121
  • 4 : 144
  • 4 : 169
  • 4 : 100
For what value of 'a' is the area of the figure bounded by \displaystyle y=\frac{1}{x}, y=\frac{1}{2x-1} x = 2 & x = a equal to \displaystyle ln\frac{4}{\sqrt{5}}?
  • \displaystyle a=4\:
  • \displaystyle a=8\:
  • \displaystyle a=4\: or \frac{2}{5}\left ( 6-\sqrt{21} \right )
  • none of these
If the area enclosed by the parabolas \displaystyle y=a-x^{2} and \displaystyle y=x^{2} is \displaystyle 18\sqrt {2} sq. units Find the value of 'a'
  • a = -9
  • a= 6
  • a =9
  • a=-6
Area enclosed between the curves { y }^{ 2 }=x and { x }^{ 2 }=y is equal to
  • \displaystyle 2\int _{ 0 }^{ 1 }{ \left( x-{ x }^{ 2 } \right) dx }
  • \displaystyle \frac { 1 }{ 3 }
  • area of region \left\{ \left( x,y \right) :{ x }^{ 2 }\le y\le \left| x \right|  \right\}
  • \displaystyle \frac { 2 }{ 3 }
Find the area enclosed between the curves \displaystyle y=\log_{e}\left ( x+e \right ), x=\log_{e}\left ( 1/y \right ) & the x-axis
  • 1 sq. units
  • 2 sq. units
  • 3 sq. units
  • 4 sq. units
Let f(x) be a continuous function given by \displaystyle f\left ( x \right )=2x for \displaystyle \left | x \right |\leq 1 for \displaystyle f\left ( x \right )=x^{2}+ax+b for \displaystyle \left | x \right |> 1. Find the area of the region in the third quadrant bounded by the curves \displaystyle x=-2y^{2} and y = f(x) lying on the left of the line 8x + 1 = 0
  • \dfrac{235}{192} ; a = 2 ; b = - 1
  • \dfrac{235}{192} ; a = -1 ; b = 2
  • \dfrac{257}{192} ; a = -1 ; b = 2
  • \dfrac{257}{192} ; a = 2 ; b = - 1
Let \displaystyle C_{1}\displaystyle C_{2} be two curves passing through the origin as shown in the figure A  curve C is said to "bisect the area" the region between \displaystyle C_{1}\displaystyle C_{1} if for each point P of C the two shaded regions A & B shown in the figure have equal areas Determine the upper curve \displaystyle C_{2} given that the bisecting curve C has the equation \displaystyle y=x^{2} & that the lower curve \displaystyle C_{1} has the equation \displaystyle y=x^{2}/2 
261710_21f627180e0e4e76a665804f347bc987.png
  • \displaystyle \left ( 16/9 \right )x^{2}
  • \displaystyle \left ( 25/9 \right )x^{2}
  • \displaystyle \left ( 25/16 \right )x^{2}
  • \displaystyle \left ( 9/25 \right )x^{2}
Find the area bounded by y = x + sinx and its inverse between x = 0 and x = \displaystyle 2\pi
  • 2
  • 4
  • 6
  • 8
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers