CBSE Questions for Class 12 Commerce Maths Application Of Integrals Quiz 12 - MCQExams.com

The area bounded by circles $$x^2+y^2=r^2$$, $$r=1, 2$$ and rays given by $$2x^2-3xy-2y^2=0$$($$y > 0$$) is?
  • $$\pi$$
  • $$\dfrac{3\pi}{4}$$
  • $$\dfrac{\pi}{2}$$
  • $$\dfrac{\pi}{4}$$
Consider two curves $${C_1}\,:\,y = \frac{1}{x}\,and\,{C_2}:\,y = \,\ell nx$$  on the $$xy$$ plane. Let $${D_1}$$ denotes the region surrounded by $${C_1},{C_2}$$ and the lines $$x=1$$  and $${D_2}$$ denotes the region the region surrounded by $${C_1},{D_2}$$ and the line $$x=a$$. If a $${D_1}={D_2}$$ then the value of $$'a'$$ -
  • $$\frac{e}{2}$$
  • $$e$$
  • $$ 1$$
  • $$2\left( {e - 1} \right)$$
The area bounded by the curves $$y=xe^{x},y=xe^{-x}$$ and the line $$x=1$$, is
  • $$\dfrac {2}{e}$$
  • $$1-\dfrac {2}{e}$$
  • $$\dfrac {1}{e}$$
  • $$1-\dfrac {1}{e}$$
The ratio of the areas of two regions of the curve $$C_1 : 4x^2 + \pi^2y^2 = 4\pi^2$$ divided by the curve $$C_2 : y = -sgn \left(x - \dfrac{\pi}{2}\right) \cos x$$ (where sgn(x) denotes signum function) is - 
  • $$\dfrac{\pi^2 +4}{\pi^2-2\sqrt{2}}$$
  • $$\dfrac{\pi^2-2}{\pi^2+2}$$
  • $$\dfrac{\pi^2+6}{\pi^2+3\sqrt{3}}$$
  • $$\dfrac{\pi^2+1}{\pi^2-\sqrt{2}}$$
If $$z$$ is not purely real then area bounded by curves $$lm\left(z+\dfrac{1}{z}\right) = 0$$ and $$|z-1| = 2$$ is (in square units)-
  • $$4\pi$$
  • $$3\pi$$
  • $$2\pi$$
  • $$\pi$$
Area bounded between the curves $$y=\sqrt{4-x^2}$$ and $$y^2=3|x|$$ is/are?
  • $$\dfrac{\pi -1}{\sqrt{3}}$$
  • $$\dfrac{2\pi -1}{3\sqrt{3}}$$
  • $$\dfrac{2\pi -\sqrt{3}}{3}$$
  • $$\dfrac{2\pi -\sqrt{3}}{3\sqrt{3}}$$
The area bounded by $$y\frac{{\sin x}}{x},x - $$ axis and the co-ordinate $$x = 0,x = \frac{\pi }{4}$$ is 
  • $$\frac{\pi }{4}$$
  • $$ < \frac{\pi }{4}$$
  • $$ > \frac{\pi }{4}$$
  • $$ < \int\limits_0^{\pi /4} {\frac{{\tan x}}{x}} $$
The graphs of $$f(x)=x^{2}$$ and $$g(x)=cx^{3}(c>0)$$ intersect at the points $$(0, 0)$$ and $$(\dfrac{1}{c}, \dfrac{1}{c^{2}})$$. If the region which lies between these graphs and over the interval $$[0, \dfrac{1}{c}]$$ has the area equal to $$(\dfrac{2}{3})sq.\ units$$, then the value of $$c$$ is :
  • $$\dfrac{1}{3}$$
  • $$\dfrac{1}{2}$$
  • $$1$$
  • $$2$$
Let function $$f_n$$ be the number of way in which a positive integer n can be written as an ordered sum of several positive integers. For example, for $$n=3$$, $${f_3} = 3,since, 3 = 3, 3 = 2 + 1$$ and $$ 3 = 1+1+1$$. Then$${f_5} =$$
  • $$4$$
  • $$5$$
  • $$6$$
  • $$7$$
Area bounded by the curves y= $$[\frac{x^{2}}{64}+2],y=x-1$$ and x=0 above x-axis is where $$[.]$$ denotes greatest $$x$$.
  • 2 sq. unit
  • 3 sq. unit
  • 4 sq. unit
  • none of these
The area (in square units) bounded by the curve $$y=\sqrt{x},2y=x+3=0$$, x-axis, and lying in the first quadrant is
  • $$9$$
  • $$36$$
  • $$18$$
  • none
Area bounded by $$y=-x^{2}+6x-5,y=-x^{2}+4x-3$$ and $$y=3x-15$$ for $$x > 1$$, is (in $$sq.\ units$$)
  • $$73$$
  • $$\dfrac {13}{6}$$
  • $$\dfrac {73}{6}$$
  • $$13$$
In a system of three curves $$C_{1}, C_{2}$$ and $$C_{3}, C_{1}$$ is a circle whose equation is $$x^{2}+y^{2}=4$$. $$C_{2}$$ is the locus of orthogonal tangents drawn on $$C_{1}. C_{3}$$ is the intersection of perpendicular tangents drawn on $$C_{2}$$. Area enclosed between the curve $$C_{2}$$ and $$C_{3}$$ is-
  • $$8\pi\ sq.\ units$$
  • $$16\pi\ sq.\ units$$
  • $$32\pi\ sq.\ units$$
  • $$None\ of\ these$$
The area bounded by the curve $$y = f(x)$$ the x-axis & the ordinates x=1 & x=b is  $$\left( {b - 1} \right)\,\sin \left( {3b + 4} \right).\,then\,f\left( x \right)is:$$
  • $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
  • $$\sin (3x + 4)$$
  • $$\sin (3x + 4) + 3\left( {x - 1} \right).cos\left( {3x + 4} \right)$$
  • none
Let $$A_{n}$$be the area bounded by the curve $$y=(\tan x)^{n}$$ and the lines $$x=0,y=0$$ and $$4x-\pi=0$$, where 
  • $$A_{n+2}+A_{n}=\dfrac{1}{(n+1)}$$
  • $$A_{1}=\dfrac{1}{2}\ln { 2 } $$
  • $$A_{n}
  • $$A_{2}=1=\dfrac{\pi}{4}$$
Area of the region defined by $$||x|+|y||\ge 1$$ and $$x^{2}+y^{2}\le 1$$ is
  • $$1$$
  • $$2$$
  • $$\pi -2$$
  • $$2\pi -1$$
The area of a region bounded by $$X$$ -axis and the curves defined by $$y = \tan x$$ $$0 \leq x \leq \frac { \pi } { 4 }$$ and $$y = \cot x , \frac { \pi } { 4 } \leq x \leq \frac { \pi } { 2 }$$ is 
  • $$\log 3$$ sq. units
  • $$\log 5$$ sq. units
  • $$\log 1$$ sq. unit
  • $$\log 2$$ sq. unit
The area bounded by the curve $$ y = \dfrac { \sin { x }  }{ { x } } , x-$$ axis and the ordinates $$ x=0,x=\dfrac { \pi }{ { 4 } }$$ is:
  • $$=\dfrac { \pi }{ { 4 } }$$
  • $$<\dfrac { \pi }{ 4 }$$
  • $$>\dfrac { \pi }{ 4 }$$
  • None of these
Area of the figure bounded by $$x$$ -axis, $$y = \sin ^ { - 1 } x , y = \cos ^ { - 1 } x$$ and the first point intersection from the origin is
  • $$2$$ $$\sqrt { 2 }$$
  • $$2 \sqrt { 2 } + 1$$
  • $$\sqrt { 2 } - 1$$
  • $$\sqrt { 2 } + 1$$
The parabolas $$y^2=4x, x^2=4y$$ divide the square region bounded by the lines $$x=4$$, $$y=4$$ and the coordinate axes. If $$S_1, S_2, S_3$$ are respectively the area of these parts numbered from top to bottom then $$S_1 : S_2 : S_3$$ is?
  • $$2:1:1$$
  • $$1:1:1$$
  • $$1:2:1$$
  • $$1:2:3$$
The area (in sq.units) of the region $$\left\{ ( x , y ) :{ y} ^ { 2 } \ge 2 x\right.$$ and $${x} ^ { 2 } +{ y} ^ { 2 } \le 4 x , x \ge 0 , y \ge 0$$ is 
  • $$\pi - \dfrac { 8 } { 3 }$$
  • $$\pi - \dfrac { 4 \sqrt { 2 } } { 3 }$$
  • $$\dfrac { \pi } { 2 } - \dfrac { 2 \sqrt { 2 } } { 3 }$$
  • $$\pi - \dfrac { 4 } { 3 }$$
Find the area of shaded portion 
1222859_fd7072cdfa104aacb7b4c0b7a98acdb2.png
  • $$90\ cm^{2}$$
  • $$80\ cm^{2}$$
  • $$110\ cm^{2}$$
  • $$70\ cm^{2}$$
The area bounded by the curves $$\sqrt{x}+\sqrt{y}=1$$ and $${x}+{y}=1$$ is ?
  • $$\dfrac{1}{3}$$
  • $$\dfrac{1}{6}$$
  • $$\dfrac{1}{2}$$
  • $$\dfrac{5}{6}$$
  • $$\dfrac{1}{4}$$
Area bounded by the curves $$y=\cos^{-1}(\sin x)$$ and $$y=\sin^{-1}(\sin x)$$ in the interval $$[0, \pi]$$ is 
  • $$\dfrac{\pi^{2}}{16}$$
  • $$\dfrac{\pi^{2}}{32}$$
  • $$\dfrac{\pi^{2}}{4}$$
  • $$\dfrac{\pi^{2}}{8}$$
Area bounded between asymptomes of curves $$f(x)$$ and $$f^{-1}(x)$$ is 
  • $$4$$
  • $$9$$
  • $$16$$
  • $$25$$
The area of the region bounded by the X-axis and the curves defined by $$y=tanx\left( \dfrac { -\pi  }{ 3 } \le x\le \dfrac { \pi  }{ 3 }  \right) and\quad y=cotx\left( \dfrac { \pi  }{ 6 } \le x\le \dfrac { 3\pi  }{ 2 }  \right) $$
  • $$log\dfrac { 3 }{ 2 } $$
  • $$log\sqrt { \dfrac { 3 }{ 2 } } $$
  • $$2log\dfrac { 3 }{ 2 } $$
  • $$log\left( \dfrac { 3 }{ \sqrt { 2 } } \right) $$
 The area of the region bounded by the X-axis and the curves defined by 
$$y=\tan { x } \left( \dfrac { -\pi  }{ 3 } \le x\le \dfrac { \pi  }{ 3 }  \right) $$ and $$y=\cot { x } \left( \dfrac { \pi  }{ 6 } \le x\le \dfrac { 3\pi  }{ 2 }  \right) $$
  • $$\log { \dfrac { 3 }{ 2 } } $$
  • $$\log { \sqrt { \dfrac { 3 }{ 2 } } } $$
  • $$2\log { \dfrac { 3 }{ 2 } } c$$
  • $$\log { \left( \dfrac { 3 }{ \sqrt { 2 } } \right) } $$
Area bounded by $$y|y|-x|x|=1,\ y|y|+x|x|=1$$ and $$y=|x|$$ is
  • $$\dfrac{\pi}{2}$$
  • $${\pi}$$
  • $$\dfrac{\pi}{4}$$
  • $$None\ of\ these$$
The area bounded by the curves is $$\sqrt{\left|x\right|}+\sqrt{\left|y\right|}=\sqrt{a}$$ and $$x^{2}+y^{2}=a^{2}$$ (where $$a>0$$) is 
  • $$\left(\pi-\dfrac{2}{3}\right)a^{2}\ sq\ units$$
  • $$\left(\pi+\dfrac{2}{3}\right)a^{2}\ sq\ units$$
  • $$\left(\pi+\dfrac{2}{3}\right)a^{3}\ sq\ units$$
  • $$\left(\pi-\dfrac{2}{3}\right)a^{3}\ sq\ units$$
The area enclosed between the curves $$y=\left|x^{3}\right|$$ and $$x=y^{3}$$ is 
  • $$\dfrac{1}{2}$$
  • $$\dfrac{1}{4}$$
  • $$\dfrac{1}{8}$$
  • $$\dfrac{1}{16}$$
Area bounded by the loop of the curve $$ x( x+ {y ^2})= {x}^{3}- {y}^{2} $$ equals
  • $$ \cfrac { \pi} {2} $$
  • $$1- \cfrac { \pi} {4} $$
  • $$2- \cfrac { \pi} {2} $$
  • $$ \pi $$
If the slope of a tangent to the curve $$y=f(x)$$ is $$4x+3$$. The curve passes through the point $$(1, 5)$$ then area bounded by the curve, and the line $$x=1$$ in first quadrant is?
  • $$\dfrac{11}{6}$$
  • $$\dfrac{1}{6}$$
  • $$\dfrac{13}{6}$$
  • $$\dfrac{6}{13}$$
What is the area of a plane figure bounded by the points of the lines max $$(x,y)=1$$ and $$x^{2}+y^{2}=1$$?
  • $$4-\pi \ sq.\ units$$
  • $$\dfrac{\pi}{3} \ sq.\ units$$
  • $$1-\dfrac{\pi}{4}\ sq.\ units$$
  • $$4+ \pi \ sq.\ units$$
Let $$f\left( x \right) =maximum\quad \left\{ { x }^{ 2 },\left( 1-x \right) ^{ 2 },2x\left( 1-x \right)  \right\} $$ where $$x\epsilon \left[ 0,1 \right] $$. The area of the  region bounded by the curve $$v$$ and the lines $$y=0,x=0,x=1$$ 
  • $$\frac { 17 }{ 27 } $$
  • $$\frac { 27 }{ 17 } $$
  • $$\frac { 17 }{ 9 } $$
  • None of these
The area of the region bounded by the limits x = 0,$$x\quad =\quad \frac { \pi  }{ 2 } $$ and f(x)=sinx, g(x) = cos x is:-
  • $$2(\sqrt { 2 } +1)$$
  • $$\sqrt { 3 } -1$$
  • $$2(\sqrt { 3 } -1)$$
  • $$2(\sqrt { 2 } -1)$$
The area bounded by the curve $${ x }^{ 2/3 }+{ y }^{ 2/3 }={ a }^{ 2/3 },+vex-axis\& +vey-axis\quad is$$ :-
  • $$\dfrac { { \pi a }^{ 2 } }{ 32 } $$
  • $$\dfrac { 3{ \pi a }^{ 2 } }{ 32 } $$
  • $$\dfrac { 5{ \pi a }^{ 2 } }{ 32 } $$
  • $$\dfrac { 3{ \pi a }^{ 2 } }{ 16 } $$
The area bounded by the curve $$y^2=4x$$ with the line x=1,x=9 is
  • $$\cfrac {436}{15}$$
  • $$\cfrac {208}{3}$$
  • $$\cfrac {236}{5}$$
  • $$\cfrac {340}{13}$$
The area bounded by the curve $$y= x+\sin x$$ and its inverse function between the ordinates $$x= 0$$ and $$x= 2\pi$$ is 
  • $$8 \pi$$ sq unit
  • $$4 \pi$$ sq unit
  • $$8$$ sq unit
  • None of these
The area of the region enclosed by $$y={ x }^{ 3 }-{ 2x }^{ 2 }+2$$ and $$y=3x+2$$ is 
  • $$\frac { 71 }{ 6 } $$
  • 14
  • $$\frac { 39 }{ 3 } $$
  • $$\frac { 71 }{ 3 } $$
The area of region $$\{ (x,y):{ x }^{ 2 }+{ y }^{ 2 }\le 1\le x+y\} $$ is:
  • $$\frac { { \pi }^{ 2 } }{ 5 } sq.$$ unit
  • $$\frac { { \pi }^{ 2 } }{ 2 } sq.$$ unit
  • $$\frac { { \pi }^{ 2 } }{ 4 } sq.$$ unit
  • $$\left( \frac { \pi }{ 4 } -\frac { 1 }{ 2 } \right) sq.$$ unit
The area $$(in sq. Units)$$ of the region $$\left\{ \left( x,y \right) :x\ge 0,x+y\le 3,{ x }^{ 2 }\le 4y and y\le 1+\sqrt { x }  \right\}$$ is:
  • $$\dfrac { 59 }{ 12 }$$
  • $$\dfrac { 3 }{ 2 }$$
  • $$\dfrac { 7 }{ 3 }$$
  • $$\dfrac { 5 }{ 2 }$$
The area enclosed by $$|x - 1| + |y - 3| = 1$$ is equal to 
  • 4 sq. units
  • 6 sq. units
  • 1 sq. units
  • 2 sq. units
Area of the contained between the parabola $$x^2=4y$$ and the curve $$y=\dfrac{8}{x^2+4}$$ is $$2\pi-K$$ then K=
  • $$\dfrac{2}{3}$$
  • $$\dfrac{4}{3}$$
  • $$\dfrac{8}{3}$$
  • $$\dfrac{1}{3}$$
If the area of the region bounded by the curves, $$y=x^{2}, y=\dfrac{1}{x}$$ and the lines $$y=0$$ and $$x=t(t>1)$$ is $$1$$ sq. units, then $$t$$ is equal to :
  • $$e^{\dfrac{3}{2}}$$
  • $$\dfrac{4}{3}$$
  • $$\dfrac{3}{2}$$
  • $$e^{\dfrac{2}{3}}$$
The area (in sq. units)of the region
$$\left\{ {x \in R:x \ge 0,y \ge 0,y \ge x - 2\,and\,y \le \sqrt x } \right\},$$ is:
  • $$\frac{{13}}{3}$$
  • $$\frac{{8}}{3}$$
  • $$\frac{{10}}{3}$$
  • $$\frac{{5}}{3}$$
The area between the curve $$y = 4 + 3 x - x ^ { 2 }$$ and $$x -$$axis is
  • $$125/ 6$$
  • $$125/ 3$$
  • $$125/ $$
  • None
Find area of region represented by $$3x+4y > 12, 4x+3y > 12$$ and $$x+y < 4$$.
  • $$2-\dfrac{6}{7}=\dfrac{8}{7}$$
  • $$2+\dfrac{6}{7}=\dfrac{8}{7}$$
  • $$2+\dfrac{6}{7}=\dfrac{7}{8}$$
  • $$\dfrac{6}{7}=\dfrac{7}{8}$$
The area of the region bounded by the curves  $$y = ex \log x$$  and  $$y = \dfrac { \log x } { ex }$$  is
  • $$\dfrac { e } { 4 } - \dfrac { 5 } { 4 e }$$
  • $$\dfrac { e } { 4 } + \dfrac { 5 } { 4 e }$$
  • $$\dfrac { e } { 3 } - \dfrac { 5 } { 4 e }$$
  • $$5e$$
The area (in square units) of the region described by $$A={(x,y):y\ge x^{2}-5x+4,x+y\ge 1,y\le 0}$$ is
  • $$\dfrac {19}{6}$$
  • $$\dfrac {17}{6}$$
  • $$\dfrac {7}{2}$$
  • $$\dfrac {13}{6}$$
The area bounded by the hyperbola $$x^2 - y^2 = 4$$ between the lines $$x = 2$$ and $$x = 4$$ is
  • $$4\sqrt{3} - 2 \,log(2 + \sqrt{3})$$
  • $$8\sqrt{3} - 4 \,log(2 - \sqrt{3})$$
  • $$8\sqrt{3} - 4 \,log(2 + \sqrt{3})$$
  • $$4\sqrt{3} - 2 \,log(2 - \sqrt{3})$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers