Explanation
{\textbf{Step - 1: Drawing a graph}}
{\text{y = |x - 1|}}
\Rightarrow {\text{ y = 1 - x if x < 1 and x - 1 if x}} \geqslant {\text{1}}
{\text{y = 3 - |x|}}
\Rightarrow {\text{ y = 3 + x if x < 0 and 3 - x if x}} \geqslant 0
{\textbf{Step - 2: Calculating area under the curve}}
\text{Required area =A=}
\int\limits_{{\text{ - 1}}}^{\text{0}} {\left( {\left( {{\text{3 + x}}} \right){\text{ - }}\left( {{\text{1 - x}}} \right)} \right){\text{ dx}}} {\text{ + }}\int\limits_{\text{0}}^{\text{1}} {\left( {{\text{(3 - x) - (1 - x)}}} \right){\text{ dx + }}\int\limits_{\text{1}}^{\text{2}} {\left( {{\text{(3 - x) - (x - 1)}}} \right)} } {\text{ dx}}
\Rightarrow {\text{ A = }}\int\limits_{{\text{ - 1}}}^{\text{0}} {{\text{(3 + x - 1 + x) dx}}} {\text{ + }}\int\limits_{\text{0}}^{\text{1}} {{\text{(3 - x - 1 + x) dx + }}\int\limits_{\text{1}}^{\text{2}} {{\text{(3 - x - x + 1) dx}}} }
\Rightarrow {\text{ A = }}\int\limits_{{\text{ - 1}}}^{\text{0}} {{\text{(2 + 2x) dx}}} {\text{ + }}\int\limits_{\text{0}}^{\text{1}} {{\text{2 dx + }}\int\limits_{\text{1}}^{\text{2}} {{\text{(4 - 2x) dx}}} }
\Rightarrow {\text{ A = }}\left[ {{\text{2x + }}\dfrac{{{\text{2}}{{\text{x}}^{\text{2}}}}}{{\text{2}}}} \right]_{{\text{ - 1}}}^{\text{0}}{\text{ + }}\left[ {{\text{2x}}} \right]_{\text{0}}^{\text{1}}{\text{ + }}\left[ {{\text{4x - }}\dfrac{{{\text{2}}{{\text{x}}^{\text{2}}}}}{{\text{2}}}} \right]_{\text{1}}^{\text{2}}
\Rightarrow {\text{ A = }}\left[ {{\text{2x + }}{{\text{x}}^{\text{2}}}} \right]_{{\text{ - 1}}}^{\text{0}}{\text{ + }}\left[ {{\text{2x}}} \right]_{\text{0}}^{\text{1}}{\text{ + }}\left[ {{\text{4x - }}{{\text{x}}^{\text{2}}}} \right]_{\text{1}}^{\text{2}}
\Rightarrow {\text{ A = [0 - ( - 2 + 1)] + [2 - 0] + [(8 - 4) - (4 - 1)]}}
\Rightarrow {\text{ A = 4 sq}}{\text{. units}}
\textbf{Hence option C is correct}
Please disable the adBlock and continue. Thank you.