CBSE Questions for Class 12 Commerce Maths Application Of Integrals Quiz 2 - MCQExams.com


Area ofthe region bounded by $$y=|x|$$ and $$\mathrm{y}=2$$ is 
  • $$4$$ sq units
  • $$2$$ sq. units
  • $$1$$ sq. units
  • $$\displaystyle \frac{1}{2}$$ sq. units
The area of a region bounded by $$\mathrm{X}$$-axis and the curves defined by $$y=\tan x ,  0\displaystyle \leq x\leq\frac{\pi}{4}$$ and $$y=\displaystyle \cot x,\frac{\pi}{4}\leq x\leq\frac{\pi}{2}$$ is:
  • $$log3$$ sq. unlts
  • $$log5$$ sq. unlts
  • $$log 1$$ sq. unit
  • $$log 2$$ sq. units

The area bounded by $$y=\cos x,\ y=x+1$$ and $$y=0$$ in the second quadrant is
  • $$\displaystyle \frac{3}{2}$$ sq. units
  • 2 sq. units
  • 1 sq. unit
  • $$\displaystyle \frac{1}{2}$$ sq,. units
The area bounded by tangent, normal and x-axis at $$\mathrm{P}(2,4)$$ to the curve $$y=x^{2}$$
  • $$34$$
  • $$32$$
  • $$36$$
  • $$24$$
Area of the region bounded by $$y=|x|$$ and $$y=1-|x|$$ is
  • $$\displaystyle \frac{1}{3}$$ sq. units
  • 1 sq. units
  • $$\displaystyle \frac{1}{2}$$ sq. unit
  • 2 sq. units
The area in square units bounded by the curves $$y=x^{3},\ y=x^{2}$$ and the ordinates $${x}=1, {x}=2$$ is
  • $$\displaystyle \frac{17}{12}$$
  • $$\displaystyle \frac{12}{13}$$
  • $$\displaystyle \frac{2}{7}$$
  • $$\displaystyle \frac{7}{2}$$
The area, in square units of the region bounded by the parabolas $$y^{2}=4x$$ and $$x^{2}=4y$$ is
  • $$\dfrac{16}{3}$$
  • $$\dfrac{32}{3}$$
  • $$\dfrac{8}{3}$$
  • $$\dfrac{4}{3}$$
The area bounded by the two curves $$y=\sqrt{x}$$ and  $$x=\sqrt{y}$$ is:
  • $$\displaystyle \frac{1}{3}$$ sq, units
  • $$\displaystyle \frac{2}{3}$$ sq. units
  • $$\displaystyle \frac{1}{5}$$ sq. units
  • $$\displaystyle \frac{1}{7}$$ sq. units
The area of the region bounded by $$x^{2}=8y,\ x=4$$ and the $$\mathrm{x}$$-axis is
  • $$\displaystyle \frac{2}{3}$$
  • $$\displaystyle \frac{4}{3}$$
  • $$\displaystyle \frac{8}{3}$$
  • $$\displaystyle \frac{10}{3}$$

Area of the figure bounded by Y-axis, $$y=Sin^{-1}x,\ y=Cos^{-1}x$$ and the first point of intersection from the origin is
  • $$2\sqrt{2}$$
  • $$2\sqrt{2}+1$$
  • $$\sqrt{2}-1$$
  • $$\sqrt{2}+1$$

The area bounded by the parabola $$x=y^{2}$$ and the line $$y=x-6$$ is
  • $$\displaystyle \frac{125}{3}$$ sq. units
  • $$\displaystyle \frac{125}{6}$$ sq. units
  • $$\displaystyle \frac{125}{4}$$ sq. units
  • $$\displaystyle \frac{115}{3}$$ sq. units
The area of the region bounded by $$y=x,\ y=x^{3}$$ is:
  • $$\displaystyle \frac{1}{4}$$ sq. units
  • $$\displaystyle \frac{1}{12}$$ sq. units
  • $$\displaystyle \frac{1}{3}$$ sq. units
  • $$\displaystyle \frac{1}{2}$$ sq. units
The area bounded by the curve $$y^{2}=x$$ and the line $$\mathrm{x}=4$$ is:
  • $$\displaystyle \frac{32}{3}$$ sq. units
  • $$\displaystyle \frac{16}{3}$$ sq. units
  • $$\displaystyle \frac{8}{3}$$ sq. units
  • $$\displaystyle \frac{4}{3}$$ sq. units
The area between the curve $$y=x^{2}$$ and $$y=x+2$$ is:
  • $$\displaystyle \frac{9}{2}$$ sq. units
  • $$\displaystyle \frac{3}{2}$$ sq. units
  • 9 sq. units
  • 6 sq. units
The area of the region between the curve $$y=4x^{2}$$ and the line $$y=6x-2$$ is:
  • $$\displaystyle \frac{1}{9}$$ sq. units
  • $$\displaystyle \frac{1}{12}$$ sq. units
  • $$\displaystyle \frac{3}{2}$$ sq. units
  • $$\displaystyle \frac{1}{5}$$ sq. units
The area bounded by the parabola $$y^{2}=4x$$ and the line $$y=2x-4$$:
  • 9 sq. units
  • 5 sq. units
  • 4 sq. units
  • 2 sq. units
The area bounded by the line $$\mathrm{x}=1$$ and the curve $$\sqrt{\dfrac{y}{x}}+\sqrt{\dfrac{x}{y}}=4$$ is
  • $$2\sqrt{3}$$
  • $$\sqrt{3}$$
  • $$3\sqrt{2}$$
  • $$4\sqrt{3}$$
Area of the region enclosed by $$y^{2}=8x$$ and $${y}=2{x}$$ is
  • $$\dfrac{4}{3}$$
  • $$\dfrac{3}{4}$$
  • $$\dfrac{1}{4}$$
  • $$\dfrac{1}{2}$$
The area between the curves $$y=\sqrt{x}$$ and $$y=x^{3}$$ is
  • $$\displaystyle \frac{1}{12}$$ sq. units
  • $$\displaystyle \frac{5}{12}$$ sq. units
  • $$\displaystyle \frac{3}{5}$$ sq. units
  • $$\displaystyle \frac{4}{5}$$ sq. units
The area bounded by the parabola $$x^{2}=4ay,\ \mathrm{x}$$-axis and the straight line $$\mathrm{y}=2\mathrm{a}$$ is:
  • $$16\sqrt{2}a^{2}$$ sq. units
  • $$\displaystyle \frac{16\sqrt{2}}{3}a^{2}$$ sq. units
  • $$\displaystyle \frac{32\sqrt{2}}{3}a^{2}$$ sq. units
  • $$\displaystyle \frac{32\sqrt{2}}{5}a^{2}$$ sq. units
The area bounded by $$\mathrm{y}=\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{x},\ \mathrm{y}=\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{x}$$ between any two successive intersections is:
  • $$2$$
  • $$\sqrt{2}$$
  • $$2\sqrt{2}$$
  • 4
The area bounded by the curves $$y=\sin x,y=$$ cosx and the $$\mathrm{y}$$-axis and the first point of intersection is:
  • $$\sqrt{2}$$ sq,.units
  • $$\sqrt{2}-1$$ sq. units
  • $$2+\sqrt{2}$$ sq. units
  • 0 sq, units
Assertion(A): The area bounded by $$y^{2}=4x$$ and $$x^{2}=4y$$ is $$\displaystyle \frac{16}{3}$$ sq. units.

Reason(R): The area bounded by $$y^{2}=4ax$$ and $$x^{2}=4ay$$ is $$\displaystyle \frac{16a^2}{3}$$ sq. units
  • Both A and R are true and R is the correct explanation of A.
  • Both A and R are true but R is not the correct explanation of A.
  • A is true but R is false.
  • A is false but R is true.
I : The area bounded by $$ x=2\cos\theta,\  y=3\sin\theta$$ is $$ 36\pi$$ sq. units.
II: The area bounded by $$ x=2\cos\theta,\  y=2\sin\theta$$ is $$ 4\pi$$ sq.units.
Which of the above statement is correct?
  • Only I
  • Only II
  • Both I and II
  • Neither I nor II.
The area of the triangle formed by the positive X-axis and the normal and tangent to the circle $$x^{2}+y^{2}=4$$ at $$(1,\sqrt{3})$$ in sq. units is:
  • $$\sqrt{3}$$
  • $$\displaystyle \frac{1}{\sqrt{3}}$$
  • $$2\sqrt{3}$$
  • $$3\sqrt{3}$$

The area between the curves $$y=\tan x$$,$$y=\cot x$$ and $$\mathrm{x}$$-axis $$(0\displaystyle \leq x\leq\frac{\pi}{2})$$ is
  • $$\log 2$$
  • $$2 \log 2$$
  • $$\displaystyle \frac{1}{2}$$ $$\log2$$
  • $$1$$
I: The area bounded by the line $$\mathrm{y}=\mathrm{x}$$ and the curve $$y=x^{3}$$ is $$1/_{2}$$ sq. units.
II: The area bounded by the curves $$y=x^{3}$$ and $$ y=x^{2}$$and the ordinates $$x=1$$, $$x=2$$ is $$\frac{7}{12}$$ sq. units.
Which of the above statement is correct?
  • Only I
  • Only II
  • Both I and II
  • Neither I nor II.
Assertion(A): The area bounded by $$y^{2}=4x$$ and $$y=x$$ is $$\displaystyle \frac{8}{3}$$ sq. units.

Reason(R): The area bounded by $$y^{2}=4ax$$ and $$y=mx$$ is $$\displaystyle \frac{8a^{2}}{3m^{3}}$$ sq. units.
  • Both A and R are true and R is the correct explanation of A.
  • Both A and R are true but R is not the correct explanation of A.
  • A is true but R is false.
  • A is false but R is true.
Area bounded by $$\displaystyle \mathrm{f}(\mathrm{x})=\max.(\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{x},\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{x})$$ $$\displaystyle \forall 0\leq x\leq\frac{\pi}{2}$$ and the co-ordinate axis is equal to:
  • $$\displaystyle \frac{1}{\sqrt{2}}$$ sq.units
  • $$\sqrt{2}$$ sq.units
  • $$2$$ sq.units
  • $$1 $$ sq. unit

The area lying in the first quadrant between the curves $$x^{2}+y^{2}=\pi^{2}$$ and $$y=\sin x$$ and y- axis is
  • $$\displaystyle \frac{\pi^{3}-8}{4}$$ sq. units
  • $$\displaystyle \frac{\pi^{3}+8}{4}$$ sq. units
  • $$4(\pi^{3}-8)$$ sq. units
  • $$\displaystyle \frac{\pi-8}{4}$$ sq. units

The area of the portion of the circle $$x^{2}+y^{2}=1$$, which lies inside the parabola $${y}^{2}=1-x$$ is
  • $$\displaystyle \frac{\pi}{2}-\frac{2}{3}$$
  • $$\displaystyle \frac{\pi}{2}+\frac{2}{3}$$
  • $$\displaystyle \frac{\pi}{2}+\frac{4}{3}$$
  • $$\displaystyle \frac{\pi}{2}-\frac{4}{3}$$
Area of the region bounded by $$y=e^{x},y=e^{-x},x=0$$ and $$x=1$$ in sq. units is:
  • $$\left(e+\dfrac{1}{e}\right)^{2}$$
  • $$\left(e-\dfrac{1}{e}\right)^{2}$$
  • $$\left(\sqrt{e}+\dfrac{1}{\sqrt{e}}\right)^{2}$$
  • $$\left(\sqrt{e}-\dfrac{1}{\sqrt{e}}\right)^{2}$$
The area of the region bounded by the curves $$\mathrm{y}=\sqrt{x}$$ and $$y=\sqrt{4-3x}$$ and $$\mathrm{y}=0$$ is:
  • 4/9
  • 16/9
  • 8/9
  • 9/2
The area of the region bounded by the curves $$y=xe^{x}, y=xe^{-x}$$ and the line $$\left| x \right| =1,y=0$$ is:
  • $$4$$
  • $$3$$
  • $$2$$
  • $$1$$
Area of the region bounded by $$y=x-[x],\ y=[x]$$ and $$\mathrm{x}$$-axis in $$[$$0,2 $$]$$ is:
  • $$\displaystyle \frac{5}{2}$$
  • $$\displaystyle \frac{3}{2}$$
  • 1
  • 2
The area of the region bounded by $$y=|x-1|$$ and $$\mathrm{y}=1$$ in sq. units is:
  • 1
  • 1/2
  • 2
  • 3

Area bounded by the curve $$\mathrm{y}=\mathrm{x}+\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{x}$$ and its inverse function between the ordinates $$\mathrm{x}=0$$ and $$\mathrm{x}=2\pi$$ is
  • 8 $$\pi$$ sqp. units
  • 4 $$\pi$$ sq. units
  • 8 sq. units
  • 3 $$\pi$$ sq. units
The area bounded by the parabolas $${y}=4{x}^{2},\ y=\displaystyle \dfrac{x^{2}}{9}$$ and the line $${y}=2$$ is
  • $$\displaystyle \frac{20\sqrt{2}}{3}$$
  • $$\displaystyle \frac{10\sqrt{2}}{3}$$
  • $$\displaystyle \frac{40\sqrt{2}}{3}$$
  • $$\displaystyle \frac{5\sqrt{2}}{3}$$
The area between the parabolas $$y^{2}=4a(x+a)$$ and $$y^{2}=-4a(x-a)$$ in sq. units is
  • $$\displaystyle \frac{4a^{2}}{3}$$
  • $$\displaystyle \frac{8a^{2}}{3}$$
  • $$\displaystyle \frac{12a^{2}}{3}$$
  • $$\displaystyle \frac{16a^{2}}{3}$$
The area bounded by $$y=|x-1|,\ y=0$$ and $$|x|=2$$ is
  • $$4$$
  • $$5$$
  • $$3$$
  • $$2$$
The area of the portion of the circle $${ x }^{ 2 }+{ y }^{ 2 }=1$$, which lies inside the parabola $${ y }^{ 2 }=1-x$$, is
  • $$\displaystyle \frac { \pi  }{ 2 } -\frac { 2 }{ 3 } $$
  • $$\displaystyle \frac { \pi  }{ 2 } +\frac { 2 }{ 3 } $$
  • $$\displaystyle \frac { \pi  }{ 2 } -\frac { 4 }{ 3 } $$
  • $$\displaystyle \frac { \pi  }{ 2 } +\frac { 4 }{ 3 } $$
The area bounded by the parabolas $${ y }^{ 2 }=4a\left( x+a \right) $$ and $${ y }^{ 2 }=-4a\left( x-a \right) $$ is:
  • $$\displaystyle \frac { 16 }{ 3 } { a }^{ 2 }$$
  • $$\displaystyle \frac { 8 }{ 3 } { a }^{ 2 }$$
  • $$\displaystyle \frac { 4 }{ 3 } { a }^{ 2 }$$
  • none of these
The area bounded by the curve $$x^2=4y$$ and straight line $$x=4y-2$$ is
  • $$\frac{3}{8}$$
  • $$\frac{5}{8}$$
  • $$\frac{7}{8}$$
  • $$\frac{9}{8}$$
The area bounded by the curve $$f(x) = ce^x(c > 0)$$, the x-axis and the two ordinates x = p and x = q is proportional to
  • $$f(p) . f(q)$$
  • $$|f(p)-f(q)|$$
  • $$f(p) + f(q)$$
  • $$\sqrt{f(p)f(q)}$$
If the area enclosed by the parabolas $$\displaystyle\ y= a-x^{2}$$ and $$\displaystyle\ y=x^{2}$$ is $$18\sqrt{2}$$ sq.units. Find the value of 'a'
  • 1
  • 2
  • 5
  • 9
The area of the region bounded by$$y=\mid x-1\mid $$ and $$ y=1$$ is
  • $$1$$
  • $$2$$
  • $$\dfrac{1}{2}$$
  • None of these
The ratio in which the area bounded by the curves $$y^2=4x$$ and $$x^2=4y$$ is divided by the line $$x = 1$$ is
  • 64 : 49
  • 15 : 34
  • 15 : 49
  • None o fthese
Semicircles are drawn outside by taking every side of regular hexagon as a diameter. The perimeter of hexagon is 60 cm. Find the area of complete figure formed as such.($$\pi$$ = 3.14) ($$\sqrt3$$ = 1.73)
  • 495 c$$m^2$$
  • 259.5c$$m^2$$
  • 235.5c$$m^2$$
  • 695.5c$$m^2$$
The area of the region bounded by the curves $$ \displaystyle y=\sqrt{x} $$ and $$ \displaystyle y=\sqrt{4-3x} $$ and $$ \displaystyle y=0 $$ is
  • $$\dfrac{4}{9}$$
  • $$\dfrac{16}{9}$$
  • $$\dfrac{8}{9}$$
  • None of these
Area of the region bounded by the curves $$y=x-1$$ and $$y=3-|x|$$ is
  • $$3$$
  • $$4$$
  • $$6$$
  • $$2$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers