Explanation
x=y2 and the line y=x−6 area in QI+ area in QIV |3∫−2[(y+6)−y2]dy| =||y22+6y−y3/3|3−2 =|92−42+6(5)−[273+8/3]| |52+30−[353]|=15+180−706=1256squnits.
Given curves are y2=8x and y=2x Let's find out their intersection point
⇒4x2=8x
⇒x2−2x=0
⇒x(x−2)=0
⇒x=0,2
The required area is A=2∫0(√8x−2x)dx =2∫0√8xdx−2∫02xdx =√8×23×[x3/2]20−[x2]20 =2√83√8−4 =163−4=43squnits
So, area of the shaded region −2√2a∫0x2/4adx+2√2a∫0(2a)dx 2a(2√2a)−4ax33|2√2a0 =4√2a2−(23/2a)34a×3 4√2a2−2×2√2a23 =16√2a23squnits.
I: (x2)2+(y3)2=1 Area=π×2×3 =6πsqunits. I (x2)2+(y2)2=1 ⇒x2+y2=4 π(2)2 =4πsqunits.
\mathrm{y}=\sqrt{x} ; y=\sqrt{4-3x} \overset{1}{\underset{0}{\int}}\sqrt{x}dx+\overset{4/3}{\underset{1}{\int}}\sqrt{4-3x}dx \dfrac{2}{3}1+\dfrac{2}{9}(4-3x)^{3/2}|_{1}^{4/3} \dfrac{2}{3}-\dfrac{2}{9}(0-1) =\dfrac{2}{3}+\dfrac{2}{9}=\dfrac{6+2}{9}=\dfrac{8}{9}sq\:units
The area bounded by the curves {y}=4{x}^{2},\ y=\displaystyle \dfrac{x^{2}}{9} and the line y=2 is A=2\times \displaystyle \overset{2}{\underset{0}{\int}}\left (3\sqrt{y}-\dfrac{\sqrt{y}}{2} \right )dy =2\left [\left[\dfrac{2}{3} 3 y^{3/2}\right]_{0}^{2} -\left[\dfrac{2}{3}\dfrac{y^{3/2}}{2} \right ]_{0}^{2} \right ] =2\left [ 2(\sqrt{8})-\dfrac{\sqrt{8}}{3} \right ] =2\left [ \sqrt{8}\left ( \dfrac{5}{3} \right ) \right ]=\dfrac{20\sqrt{2}}{3}sq\:units.
{\textbf{Step -1: Sketching the rough figure in the Coordinate plane according to the given equation.}}
{\text{Firstly from the first curve}}
{\text{Given function is }} = \left| {\left. {{\text{x}} - {\text{1}}} \right|} \right.
\Rightarrow {\text{y}} = {\text{x}} - {\text{1 if x > 1}}
= - {\text{x}} + 1{\text{ if x < 1}}
{\text{For 2nd function }}\left| {\left. {\text{x}} \right| = 2} \right.
\Rightarrow {\text{x = + 2 or x}} = - 2
{\textbf{Step -2: Finding the required coordinates}}
{\text{So the point will be for A }} = \left( {1,0} \right)
{\text{As EF is x}} = 2{\text{ line so E }} = \left( {2,0} \right)
{\text{F}} = \left( {2,1} \right)
{\text{D}} = \left( { - 2,0} \right)
{\text{Put }} - 2{\text{ in }}\left( { - {\text{x}} + 1} \right){\text{ so y}} = 3
{\text{C}} = \left( {-2,3} \right)
{\textbf{Step -3: Finding the total Area.}}
{\text{Total area}} = \Delta CDA + \Delta AEF
{\text{Area of those }}\Delta {\text{ will be }}\dfrac{1}{2} \times {\text{base}} \times {\text{height}}
= \ \dfrac{1}{2} \times {\text{DA}} \times {\text{CD + }}\dfrac{1}{2} \times {\text{AF}} \times {\text{EF}}
= \dfrac{1}{2} \times \left( {1 - \left( { - 2} \right)} \right) \times 3 + \dfrac{1}{2} \times \left( {2 - 1} \right) \times 1
= \dfrac{1}{2} \times 3 \times 3 + \dfrac{1}{2} \times 1 \times 1
= \dfrac{9}{2} + \dfrac{1}{2}
= \dfrac{{10}}{2}
= 5{\text{ square unit}}
{\textbf{ Hence, the area bounced by given curves is 5 square units. Thus, option B is the}}
{\textbf{correct answer.}}
Please disable the adBlock and continue. Thank you.